Алюминий. Полукристаллические и аморфные металлы и сплавы

Медь

Полукристаллические и аморфные металлы и сплавы. Особенности металлов в тонкопленочном состоянии

Поликристаллы состоят из мелких монокристаллов: медь, серебро, алюминий, натрий.

Преимущества меди, обеспечивающие ей широкое применение в качестве проводникового материала, следующие:

1) малое удельное сопротивление (из всех металлов только серебро имеет ρ несколько меньшее, чем медь);

2) достаточно высокая механическая прочность;

3) удовлетворительная коррозионная стойкость; медь окисляется на воздухе даже в условиях высокой влажности значительно медленнее, чем, например, железо; интенсивное окисление меди происходит только при повышенных температурах (рисунок 3.3);

4) хорошая обрабатываемость; медь прокатывается в листы и ленты и протягивается в проволоку;

5) относительная легкость пайки и сварки.

Медь получают чаще всего путем переработки сульфидных руд. Медь, предназначенная для электротехнических целей, обязательно подвергается электролитической очистке, Полученные в результате электролиза катодные пластины меди переплавляют в болванки массой 80-90 кг, которые прокатывают и протягивают, создавая изделия требующегося поперечного сечения.

При изготовлении проволоки болванки сначала подвергают горячей прокатке в катанку диаметром 6,5-7,2 мм, которую затем протягивают без подогрева, получая проволоку нужных диаметров.

В качестве проводникового материала используют медь марок Ml и МО. Медь марки Ml содержит 99,9% Сu, а в общем количестве примесей (0,1%) кислорода должно быть не более 0,08%. Наличие в меди кислорода ухудшает ее механические свойства. Лучшими механическими свойствами обладает медь марки МО, в которой содержится не более 0,05% примесей, в том числе не свыше 0,02% кислорода. Из меди марки АЛО может быть изготовлена особо тонкая проволока (до диаметра 0,01 мм).


а - удельное сопротивление, мкОм*м; б – предел прочности при растяжении; в – относительное удлинение при разрыве

Рисунок 3.1 – Зависимости параметров меди от температуры отжига (при продолжительности отжига 1ч)

При холодной протяжке получают твердую (твердотянутую) медь (МТ), которая благодаря наклепу имеет высокий предел прочности при растяжении, если удлинение мало, а также твердость и упругость; при изгибе проволока из твердой меди несколько пружинит.

Если же медь подвергнуть отжигу, т. е. нагреву до нескольких сотен градусов с последующим охлаждением, то получится мягкая (отожженная) медь (ММ), которая сравнительно пластична, имеет пониженную твердость и небольшую прочность, но весьма большое удлинение при разрыве и (в соответствии с рассмотренными общими закономерностями) более высокую удельную проводимость.

Влияние отжига на свойства меди показано на рисунке 3.1. Изменение механических свойств - σ р и Δl/l при отжиге выражено сильнее, чем изменение ρ.

Электропроводность меди весьма чувствительна к наличию примесей (рисунок 3.2).

Твердую медь употребляют там, где надо обеспечить высокую механическую прочность, твердость и сопротивляемость истиранию: для контактных проводов, для шин распределительных устройств, для коллекторных пластин электрических машин и пр.

Мягкую медь в виде проволок круглого и прямоугольного сечения применяют главным образом в виде токопроводящих жил кабелей и обмоточных проводов, где важна гибкость и пластичность (отсутствие «пружинения» при изгибе), а прочность не имеет существенного значения.

Медь - сравнительно дорогой и дефицитный материал. Поэтому она должна расходоваться весьма экономно. Отходы меди на электротехнических предприятиях необходимо собирать; и важно не смешивать их с другими металлами, а также с менее чистой (не электротехнической) медью, чтобы можно было их переплавить и вновь использовать в этом качестве. Медь как проводниковый материал в ряде случаев заменяют другими металлами, чаще всего алюминием.

В отдельных случаях помимо чистой меди в качестве проводникового материала применяют ее сплавы с небольшим содержанием легирующих примесей: Sn, Si, P, Be, Cr, Mg, Ca и др. Такие сплавы, называемые бронзами, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь.

Рисунок 3.2 – Влияние различных примесей на удельную проводимость γ меди

σр бронз может доходить до 800 - 1200 МПа и более. Бронзы широко применяют для изготовления токопроводящих пружин и т. п.

Введение в медь кадмия при сравнительно малом снижении удельной проводимости у дает существенное повышение механической прочности и твердости. Кадмиевую бронзу применяют для контактных проводов и коллекторных пластин особо ответственного назначения. Еще большей механической прочностью обладает бериллиевая бронза (σр до 1350 МПа).

Латунь (сплав меди с цинком) обладает достаточно высоким относительным удлинением при повышенном пределе прочности на растяжение по сравнению с чистой медью. Это дает латуни технологические преимущества при обработке штамповкой, глубокой вытяжкой и т.п.

Латунь применяют в электротехнике для изготовления различных токопроводящих деталей.

Алюминий - важнейший представитель так называемых легких металлов, т. е. металлов с плотностью менее 5000 кг/м3: плотность литого алюминия около 2600, прокатанного - 2700 кг/м3. Таким образом, алюминий приблизительно в 3,5 раза легче меди.

Удельное сопротивление ρ алюминия примерно в 1,63 раза больше ρ меди. Поэтому замена меди алюминием не всегда возможна, особенно в радиоэлектронике. Однако если сравнить по массе два отрезка алюминиевого и медного проводов одной и той же длины и одного и того же сопротивления, то окажется, что алюминиевый провод хотя и толще медного, но легче его приблизительно в 2 раза, Поэтому для изготовления проводов одной и той же проводимости на единицу длины алюминий выгоднее меди в том случае, если тонна алюминия дороже тонны меди не более чем в два раза. Важно и то, что алюминий менее дефицитен, чем медь.

Для электротехнических целей используют алюминий марки А1, содержащий не более 0,5% примесей. Еще более чистый алюминий марки AB00 (не более 0,03% примесей) применяют для изготовления алюминиевой фольги, электродов и корпусов электролитических конденсаторов. Алюминий наивысшей чистоты AB0000 содержит не более 0,004% примесей.

Прокатка, протяжка и отжиг алюминия аналогичны соответствующим операциям для меди. Из алюминия может прокатываться тонкая (до 6 - 7 мкм) фольга, применяемая в качестве обкладок в бумажных и пленочных конденсаторах.

Алюминий на воздухе активно окисляется и покрывается тонкой оксидной пленкой с большим электрическим сопротивлением. Эта пленка предохраняет алюминий от дальнейшей коррозии, но создает большое переходное сопротивление в местах контакта алюминиевых проводов и сильно затрудняет пайку алюминия обычными способами. Для пайки алюминия применяют специальные пасты - припои пли используют ультразвуковые паяльники.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: