Цифровое кодирование

Спектр модулированного сигнала

Рассмотрим сначала спектр сигнала при потенциальном кодировании. Пусть логическая единица кодируется положительным потенциалом, а логический ноль — отрицательным потенциалом такой же величины. Для упрощения вычислений пред­положим, что передается информация, состоящая из бесконечной последователь­ности чередующихся единиц и нулей, в данном случае величины бод и бит в секунду совпадают.

Если дискретные данные передаются с битовой скоростью N бит/с, то спектр состоит из постоянной составляющей нуле­вой частоты и бесконечного ряда гармоник с частотами f0,3fo, 5f0,7f0,..., где f0 = N/2. Амплитуды этих гармоник убывают достаточно медленно — с коэффициентами 1/3, 1/5,1/7,... от амплитуды гармоники f0. В результате спектр потенци­ального кода требует для качественной передачи широкую полосу пропускания. Кроме того, нужно учесть, что реально спектр сигнала постоянно меняется в зави­симости от того, какие данные передаются по линии связи. Например, передача длинной последовательности нулей или единиц сдвигает спектр в сторону низких частот, а в крайнем случае, когда передаваемые данные состоят только из единиц (или только из нулей), спектр состоит из гармоники нулевой частоты. При переда­че чередующихся единиц и нулей постоянная составляющая отсутствует. Поэтому спектр результирующего сигнала потенциального кода при передаче произволь­ных данных занимает полосу от некоторой величины, близкой к 0 Гц, до примерно 7fo (гармониками d частотами выше 7fo можно пренебречь из-за их малого вклада в результирующий сигнал).

Для канала тональной частоты (телефон) верхняя граница при потенциальном кодировании достигается для скорости передачи данных в 971 бит/с, а нижняя неприемлема для любых скоростей, так как полоса пропускания канала начинается с 300 Гц. В результате потенциальные коды на каналах тональной час­тоты никогда не используются.

Применяют потенциальные и импульсные коды. Потенциальные для представления сигнала используют уровень, импульсные – импульс либо перепад.

Требования к методам цифрового кодирования:

· Битовая синхронизация приемника и передатчика

· Распознавание ошибочных символов

· Отсутствие постоянной составляющей для обеспечения гальванической развязки

· Экономичное использование частотного спектра

Синхронизация.

· отдельной тактирующей линии связи (на небольших расстояниях)

· самосинхронизирующиеся коды, сигналы которых несут для передатчика указания о том, в какой момент времени нужно осуществлять распознавание очередного бита (или нескольких бит, если код ориентирован более чем на два состояния сигнала). Любой резкий перепад сигнала — так называемый фронт — может служить хорошим указанием для синх­ронизации приемника с передатчиком.

При использовании синусоид в качестве несущего сигнала результирующий код обладает свойством самосинхронизации, так как изменение амплитуды несу­щей частоты дает возможность приемнику определить момент появления входно­го кода.

Распознавание и коррекцию искаженных данных сложно осуществить средствами физического уровня, поэтому чаще всего эту работу берут на себя протоколы, ле­жащие выше: канальный, сетевой, транспортный или прикладной. С другой сторо­ны, распознавание ошибок на физическом уровне экономит время, так как приемник не ждет полного помещения кадра в буфер, а отбраковывает его сразу при распо­знавании ошибочных бит внутри кадра.

Требования, предъявляемые к методам кодирования, являются взаимно проти­воречивыми, поэтому каждый из рассматриваемых ниже популярных методов циф­рового кодирования обладает своими преимуществами и своими недостатками по сравнению с другими.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: