Открытые системы

Классификация по степени распределенности

Открытая система — это система, состоящая из компонентов, которые взаимодействуют друг с другом через стандартные интерфейсы.

Главным преимуществом подхода открытых систем является упрощение комплексирования вычислительных систем за счет международной и национальной стандартизации аппаратных и программных интерфейсов, служб и поддерживаемых форматов. Открытые системы приобретают особое значение и масштабность в связи с бурным развитием технологий глобальных коммуникаций.

Свойства открытых систем:

— расширяемость/ масштабируемость;

— мобильность (переносимость) — простота переноса информационной системы на любую аппаратно-программную платформу, соответствующую стандартам;

— интероперабельность (способность к взаимодействию с другими системами);

— дружественность к пользователю, в том числе легкая управляемость.

Подход открытых систем обеспечивает преимущества для разного рода ИТ-специалистов. Для пользователя (заказчика) открытые системы обеспечивают:

- возможность постепенного наращивания вычислительных, информационных и других мощностей компьютерной системы (пользователи могут постепенно заменять компоненты системы на более совершенные);

- освобождение от зависимости от одного поставщика аппаратных или программных средств, возможность выбора продуктов из предложенных на рынке при условии соблюдения поставщиком соответствующих стандартов открытых систем;

- дружественность среды, в которой работает пользователь, мобильность персонала в процессе эволюции системы; возможность использования информационных ресурсов, имеющихся в других системах (организациях).

Проектировщик информационных систем получает возможность использования разных аппаратных платформ; возможность совместного использования прикладных программ, реализованных в разных операционных системах; развитые средства инструментальных сред, поддерживающих проектирование; возможности использования готовых программных продуктов и информационных ресурсов. Разработчики системных программных средств имеют: новые возможности разделения труда, благодаря повторному использованию программ; развитые инструментальные среды и системы программирования; возможности модульной организации программных комплексов благодаря стандартизации программных интерфейсов.

7.4.1.1. Модель взаимосвязи открытых систем (ISO/OSI)

Протокол — набор соглашений, принятый двумя взаимодействующими системами.

Интерфейс — набор соглашений, принятый двумя (или более) взаимодействующими элементами одной системы.

Открытые системы используют стандартные протоколы и интерфейсы. Особое значение подход открытых систем приобретает в случае сетевого взаимодействия.

Международная организация по стандартизации (ISO), основываясь на опыте многомашинных систем, который был накоплен в разных странах, выдвинула концепцию архитектуры открытых систем OSI — эталонную модель, используемую при разработке международных стандартов. Модель определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какую работу должен делать каждый уровень.

Модель состоит из семи уровней (рис. 1.).

                   
 
   
Прикладной уровень
 
   
Представительный уровень
 
   
Сеансовый уровень
 
   
Транспортный уровень
 
   
Сетевой уровень
 
   
Канальный уровень
 
   
Физический уровень
 


Рис. 1. Семиуровневая модель ISO / OSI.

Сетевым протоколом — набор правил, по которым взаимодействуют друг с другом одинаковые уровни двух систем (расположенных на разных узлах сети).

Сетевой интерфейс — это набор правил, по которым взаимодействуют между собой два смежных уровня одной системы.

1. Физический уровень имеет дело с передачей битов по физическим каналам связи, таким, например, как коаксиальный кабель, витая пара, оптоволоконный кабель или цифровой территориальный канал. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и др. Принципиальными вопросами здесь являются следующие: какое напряжение должно использоваться для отображения единицы, а какое — нуля; сколько микросекунд длится бит; может ли передача одновременно производиться в двух направлениях; как устанавливается начальная связь и как она прекращается, когда обе стороны закончили свои задачи; из какого количества проводов должен состоять кабель и каковы функции каждого провода.

2. Канальный уровень. Одна из задач — проверка доступности среды передачи (в некоторых сетях, в которых линии связи используются (разделяются) попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята). Другой задачей является реализация механизмов обнаружения и коррекции ошибок. Для этого биты группируются в наборы, называемые кадрами. Канальный уровень обеспечивает корректность передачи каждого кадра, вычисляя для него контрольную сумму и добавляя ее к кадру. Когда кадр приходит по сети, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если не совпадают, то фиксируется ошибка. Канальный уровень может не только обнаруживать ошибки, но и исправлять их за счет повторной передачи поврежденных кадров. Кроме того, на канальном уровне вводится адресация узлов в пределах одной сети.

3. Сетевой уровень служит для образования единой транспортной системы, объединяющей несколько сетей, причем эти сети могут использовать совершенно разные принципы передачи сообщений между конечными узлами и обладать произвольной структурой связей. Должны решаться проблемы с разными способами адресации в различных сетях и разными ограничениями на размер передаваемых пакетов. Важнейшим моментом здесь является определение маршрутов пересылки пакетов от источника к пункту назначения. Для этого используются устройства, называемые маршрутизаторами. Маршрутизаторы физически соединяют сети между собой, а, кроме того, постоянно собирают информацию о топологии сетевых соединений и на ее основании пересылают пакеты в сеть назначения. Одним из протоколов сетевого уровня является протокол IP, лежащий в основе Интернета.

4. Транспортный уровень. Основная функция — принять данные от сеансового уровня, разбить их при необходимости на небольшие части, передать их сетевому уровню и гарантировать, что эти части в правильном виде прибудут по назначению. Таким образом, транспортный уровень обеспечивает приложениям или верхним уровням модели передачу данных с той степенью надежности, которая им требуется. Примером протокола транспортного уровня может служить TCP.

5. Сеансовый уровень обеспечивает управление взаимодействием: фиксирует, какая из сторон является активной в настоящий момент, предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, а не начинать все с начала. На практике им пользуются редко.

6. Представительный уровень имеет дело с формой представления передаваемой по сети информации, не меняя при этом ее содержания. С помощью средств данного уровня протоколы прикладных уровней могут преодолеть синтаксические различия в представлении данных или же различия в кодах символов. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которым секретность обмена данными обеспечивается сразу для всех прикладных служб (например, протокол SSL).

7. Прикладной уровень — это набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые web-страницы, а также организуют свою совместную работу, например, по протоколу электронной почты. Единица данных, которой оперирует прикладной уровень, обычно называется сообщением.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: