Местные гидравлические сопротивления

  а) б) Рис. 5.10
При резком изменении формы и размеров поперечного сечения потока
(расширения, сужения, повороты и т. п.) изменяется поле скоростей, и образуются области, заполненные крупными и мелкими вихрями. Кинематическая структура течения с образованием отрывов потока от стенок и вихревых зон показана на рис. 5.10 и 5.11. На рис. 5.10 показана схема потока жидкости на повороте: а) при резком (без закругления) повороте; б) при плавном повороте. На рис. 5.11 показана схема потока при изменении поперечного сечения трубы: а) резком расширении; б) сужении.

Крупные вихри интенсифицируют рассеивание энергии, благодаря чему потери в местных сопротивлениях могут намного превосходить потери по длине участка той же протяженности, что и местное сопротивление.

Структура потока, размеры и интенсив-ность вихрей существен-но зависят от режима те-чения, т. е. от числа Рей-нольдса.

Местные потери напора разделяют на группы:

а) потери, связанные с изменением живого сечения потока (средней скорости) в случае резкого и плавного расширения в трубопроводах;

б) потери, вызванные изменением направления потока, что встречается в коленах (отводах);

в) потери, связанные с протеканием жидкости через арматуру (вентили, краны, обратные клапаны, сетки и т. п.);

г) потери, связанные с отделением одной части потока от другой, или слиянием двух потоков в один общий, что наблюдается в тройниках, крестовинах и отверстиях в боковых стенках трубопровода при транзитном расходе.

Потери напора в местных сопротивлениях рассчитывают по формуле Вейсбаха (5.20). Коэффициент ζм, входящий в формулу, определяется экспериментально для каждого местного сопротивления.

В некоторых случаях для квадратичной области сопротивлений при определенных допущениях найдены теоретические зависимости для ζм.

При больших числах Re, в области квадратичного сопротивления, коэффициент ζм зависит только от конфигурации граничных поверхностей и не зависит от рода жидкости и скорости течения (то есть от Re).

При малых числах Re коэффициент ζм зависит не только от размеров и геометрической формы граничных поверхностей потока,но также от Re.

Местное сопротивление при внезапном расширении трубы. Выходя из узкой части трубы (рис. 5.11), струя отрывается от стенок, и пространство между струей и стенками заполняется вихрями. На некотором расстоянии lр струя полностью расширяется, но в сечении 2´-2´ может иметь резко неравномерную эпюру скоростей, что обусловлено искривлением потока на участке lр. Выравнивание эпюры происходит на переходном участке lв, в конце которого (сечение 2–2) устанавливается распределение скоростей, характерное для стабилизированного потока. Поскольку перестройка эпюры скоростей сопровождается дополнительными потерями (помимо потерь на трение), то расчетный участок местного сопротивления l 0 включает водоворотный и переходный участки, то есть l 0= lр+lв.

Выразим потери при внезапном расширении из уравнения Бернулли

. (5.63)

В дальнейшем (для простоты) будем полагать, что α12=1.

Чтобы исключить разность давлений, применим к отсеку жидкости, ограниченному сечениями 1–1 и 2–2 и боковой поверхностью трубы (контрольная поверхность на рис. 5.11 показана штриховой линией), уравнение количества движения

  Рис. 5.11
. (5.64)

Здесь α0 - корректив количества движения, который для сечений 1–1 и 2–2 можно принять равным единице; (T 0)S - проекция на направление движения внешней силы трения T 0, действующей со стороны стенок трубы на рассматриваемый отсек жидкости.

Так как длина участка потока между сечениями 1–1 и 2–2 невелика, то силой T 0 пренебрегаем и считаем (T 0)S≈0 (1-е допущение); проекция собственного веса отсека на направление движения GS =0; PS - сумма проекций на ось S сил гидродинамического давления P 1 и P 2, действующих соответственно на торцевые сечения 1–1 и 2–2 выделенного отсека транзитной струи; RS - проекция реакции стенок; RS=R,где R – сила давления вертикальной стенки, имеющей кольцевую форму.

Сумму PS+RS в (5.64) можно представить в виде

PS+RS =(P 1- P 2)+ R =(P 1+ R)- P 2. (5.65)

Измерения показывают, что в сечении 2–2 давление распределяется по гидростатическому закону и P 2 = p 2 ω 2, а в пределах кольцевой площади давление мало отличается от p 1. Поэтому вместо (5.65) можно написать:

(P 1+ R)- P 2=(p 1 ω 1+ p 1 ωk) - p 2 ω 2 = p 1(ω 1+ ωk) - p 2 ω 2= p 1 ω 2 - p 2 ω 2= ω 2(p 1 - p 2).

Теперь, приняв во внимание, что Q = v 2 ω 2, вместо уравнения (5.64) получим:

ρv 2 ω 2(v 2- v 1)=(p 1- p 2) ω 2.

Следовательно,

.

Теперь уравнение Бернулли (5.63) можно записать в виде

,

который, после упрощений, приводит к формуле Борда:

.

Эта формула показывает, что потеря напора при внезапном расширении потока равна скоростному напору, вычисленному по потерянной скорости (v 1- v 2). Используя уравнение неразрывности, формулу Борда можно привести к виду формулы Вейсбаха (5.17), и получить теоретическое выражение для коэффициента сопротивления ζM. Действительно, поскольку ω 1 v 1= ω 2 v 2, то

,

и, следовательно,

. (5.66)

В частном случае, когда, ζвн.р = ζвых =1 или hвых = v 12/(2 g). Используя формулу (5.66), следует помнить о допущениях, на которых она построена. Одно из них - предположение о том, что α0≈1 и α≈1. Поэтому при значительной неравномерности распределения скоростей перед расширением (когда эти коэффициенты существенно отличаются от единицы) формула (5.66) требует уточнения, которое получают, отказавшись от допущения α0≈1 и α≈1.

Другое допущение связано с влиянием числа Рейнольдса. Влияние проявляется при Re ≤5000, а при малых числах Re становится преобладающим, поэтому формула Борда (5.66) дает удовлетворительные результаты лишь в квадратичной области сопротивления.

Заметим, наконец, что формула Борда учитывает только потери на расширение, т.е. то превышение местных потерь над потерями по длине на участке l 0, которое вызвано увеличением диссипации энергии в местном сопротивлении. Если расчетный участок l 0= lр+lв велик, то потери на трение здесь могут быть сопоставимы с потерями на расширение, и пренебрегать ими нельзя. Поэтому при постановке опыта для определения потерь на расширение следует из потерь, измеренных в опыте, вычесть потери по длине на участке эквивалентной длины. Это замечание относится и к другим видам местных сопротивлений.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: