Компьютеры и микроэлектроника

Наноматериалы

Новейшие достижения

Материалы, разработанные на основе наночастиц с уникальными характеристиками, вытекающими из микроскопических размеров их составляющих.

  • Углеродные нанотрубки — протяжённые цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной до нескольких сантиметров, состоящие из одной или нескольких свёрнутых в трубку гексагональных графитовых плоскостей (графенов) и обычно заканчивающиеся полусферической головкой.
  • Фуллерены — молекулярные соединения, принадлежащие классу аллотропных форм углерода (другие — алмаз, карбин и графит) и представляющие собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода.
  • Графен — монослой атомов углерода, полученный в октябре 2004 года в Манчестерском университете (The University Of Manchester). Графен можно использовать как детектор молекул (NO2), позволяющий детектировать приход и уход единичных молекул. Носители зарядов в графене обладают высокой подвижностью при комнатной температуре, благодаря чему с решением проблемы формирования запрещённой зоны в этом полуметалле графен оказывается перспективным материалом, заменяющим кремний в интегральных микросхемах.
  • Нанокристаллы
  • Аэрогель
  • Аэрографит — самый твёрдый материал
  • Наноаккумуляторы — в начале 2005 года компания Altair Nanotechnologies (США) объявила о создании инновационного нанотехнологического материала для электродов литий-ионных аккумуляторов. Аккумуляторы с Li4Ti5O12 электродами имеют время зарядки 10-15 минут. В феврале 2006 года компания начала производство аккумуляторов на своём заводе в Индиане. В марте 2006 Altairnano и компания Boshart Engineering заключили соглашение о совместном создании электромобиля. В мае 2006 успешно завершились испытания автомобильных наноаккумуляторов. В июле 2006 Altair Nanotechnologies получила первый заказ на поставку литий-ионных аккумуляторов для электромобилей.
  • Самоочищающиеся поверхности на основе эффекта лотоса.
  • Центральные процессоры — 15 октября 2007 года компания Intel заявила о разработке нового прототипа процессора, содержащего наименьший структурный элемент размерами примерно 45 нм. В дальнейшем компания намерена достичь размеров структурных элементов до 5 нм. Основной конкурент Intel, компания AMD, также давно использует для производства своих процессоров нанотехнологические процессы, разработанные совместно с компанией IBM. Характерным отличием от разработок Intel является применение дополнительного изолирующего слоя SOI, препятствующего утечке тока за счет дополнительной изоляции структур, формирующих транзистор. Уже существуют рабочие образцы процессоров с транзисторами размером 32 нм и опытные образцы на 22 нм.
  • Жёсткие диски — в 2007 году Питер Грюнберг и Альберт Ферт получили Нобелевскую премию по физике за открытие GMR-эффекта, позволяющего производить запись данных на жестких дисках с атомарной плотностью информации.
  • Сканирующий зондовый микроскоп — микроскоп высокого разрешения, основанный на взаимодействии иглы кантилевера (зонда) с поверхностью исследуемого образца. Обычно под взаимодействием понимается притяжение или отталкивание кантилевера от поверхности из-за сил Ван-дер-Ваальса. Но при использовании специальных кантилеверов можно изучать электрические и магнитные свойства поверхности. СЗМ может исследовать как проводящие, так и непроводящие поверхности даже через слой жидкости, что позволяет работать с органическими молекулами (ДНК). Пространственное разрешение сканирующих зондовых микроскопов зависит от характеристик используемых зондов. Разрешение достигает атомарного по горизонтали и существенно превышает его по вертикали.
  • Антенна-осциллятор — 9 февраля 2005 года в лаборатории Бостонского университета была получена антенна-осциллятор размерами порядка 1 мкм. Это устройство насчитывает 5000 миллионов атомов и способно осциллировать с частотой 1,49 гигагерц, что позволяет передавать с её помощью огромные объёмы информации.
  • Плазмоны — коллективные колебания свободных электронов в металле. Характерной особенностью возбуждения плазмонов можно считать так называемый плазмонный резонанс, впервые предсказанный Ми в начале XX века. Длина волны плазмонного резонанса, например, для сферической частицы серебра диаметром 50 нм составляет примерно 400 нм, что указывает на возможность регистрации наночастиц далеко за границами дифракционного предела (длина волны излучения много больше размеров частицы). В начале 2000-го года, благодаря быстрому прогрессу в технологии изготовления частиц наноразмеров, был дан толчок к развитию новой области нанотехнологии — наноплазмонике. Оказалось возможным передавать электромагнитное излучение вдоль цепочки металлических наночастиц с помощью возбуждения плазмонных колебаний.

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: