Основные теоремы о непрерывных функциях

Классификация точек разрыва функции.

Определение: Пусть y=f(x) определена в О°(х0), а в самой точке х0 может быть как и определена, так и неопределенна.

1) Точка х0 называется точкой разрыва 1 ого рода функции, если

а) Существует lim f(x)’=lim f(x)’’, но либо функция неопределенна в точки х0 либо f(x0)¹b. Тогда точка х0

x®x°+0 x®x°-0

точка устранимого разрыва.

 
 


1,x=1

Y=(x-1)/(x-1)=

Не $, x=1

б) f(x)=c¹b

Можно доопределить или переопределить в точке х0, так что она станет непрерывной.

$ lim f(x)=b; lim f(x)=c, но b¹c

x®x°+0 x®x°-0

Может быть и определена f(x0)=b

Или f(x0)=d

2)Точка х0 называется точкой разрыва 2 ого рода функции если она не является точкой разрыва 1 ого порядка, то есть если хотя бы один из односторонних пределов не существует или равен бесконечности.

y=sin(1/x)

Теорема: Все основные элементы функции непрерывны в любой точки своей области определения.

Определение: (функции непрерывной на отрезке)

y=f(x) – называется непрерывной на отрезке [a,b], если она непрерывна в любой точке хÎ(a,b). В точке х=а функция непрерывна справа, то есть lim f(x)=f(a), а в точке х=b функция непрерывна слева lim f(x)=f(b).

x®x°+0 x®x°-0

Функция непрерывна на множестве D если она непрерывна в этой точке.

Теорема: (о сохранение знака непрерывной функции)

Пусть y=f(x) непрерывна в точке х0 и f(x0)>0 (f(x0)<0), тогда f(x)>0 f(x)<0 непрерывна в некоторой точки О(х0)

Доказательство: $ lim f(x)=f(x0)Û "ε>0 $ d>0 "x: |x-x0|<d Þ |f(x)-f(x0)|<ε.

x®x°

Пусть f(x0)>0, выберем ε=f(x0) Þ |f(x)-f(x0)|<f(x0) "xÎOd(x0) ($d>0!)

-f(x0)<f(x)-f(x0)<f(x0); f(x)>0 "xÎOd(x0), если f(x0)<0, то ε=-f(x0)

Теорема Коши: (о нуле непрерывной функции)

Пусть f(x) непрерывна на [a,b] и на концах его принимает значение разных знаков f(a) f(b) <0, тогда $ x0Î(a,b): f(x0)=0

Доказательство:

f(b)>0 f(a)<0

Разделим отрезок [a,b] пополам. Если в середине отрезка f(x)=0, то всё доказано, если нет, то выберем ту половину отрезка, на концах которой функция принимает значение разных знаков. Выбранной отрезок поделим пополам. Если в середине нового отрезка f(x)=0, то всё доказано, если нет, то выберем ту половину от той половины, на концах которой функция принимает значение разных знаков и т.д.

[a,b]É[a1,b1]É[a2,b2]

Последовательность левых концов удовлетворяет отношению a<a1<a2<…<an<…<b

b³b1³b2³…³bn³…>a Þ

{an}-ограниченная не убывающая $ lim an=a£b f(a)<0 f(an)<0 "n

x®+¥ |[anbn]|=(b-a)/2n ®0 при n®¥

{bn}-ограниченная не возрастающая $ lim bn=b³a f(b)>0 f(bn)>0 "n

x®+¥

В силу непрерывности функции lim f(an)=f (lim bn)=f(b)³0 lim (bn-an)=b-a= lim (b-a)/2n=0Þa=b

x®+¥ x®+¥ x®+¥ x®+¥

f(a)£0

Þ f(a)=0 x0=a

f(b)=f(a)³0

Условие непрерывности функции нельзя отбросить: f(b)>0; f(a)<0

Теоремы Вейштрасса.

1) Теорема: Пусть функция y=f(x) непрерывна на отрезке [a,b]. Тогда она ограниченна на нём.

Замечание: а) Условие непрерывности нельзя отбросить

Неограниченна сверху Þ неограниченна

 
 


б) Нельзя заменить отрезок на интервал или

полуинтервал.

Непрерывна на (0;1]

2) Теорема: Пусть функция y=f(x) непрерывна на отрезке [a,b]. Среди её значений есть наибольшее и наименьшее.

Замечание: а) Множество [0;1] наибольшее значение 1ÎМ

наименьшее значение 0 Î М

б) Множество (0;1]=М наибольшее значение 1ÎМ

нет наименьшего

в) Множество [0;1)=M нет наибольшего

наименьшее значение 0 Î М

г) Множество (0;1)=М нет ни того не другого.

Условие отрезка нельзя заменить на интервал или полуинтервал.

xÎ(0;1] непрерывна на (0;1] нет наибольшего значения


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: