Основные теоремы о производной

Геометрический смысл производной.

y’(x0)=lim∆y/∆x – производная функции у(х) и в точке х0.

х®0

∆y=y(x0+∆x)-y(x0)

y’(x0)=tgaкас где aкас – угол наклона в точке (х0;y(x0)) к оси

Теорема: Пусть $ f’(x) и g’(x), тогда $ [f(x)+g(x)]’= f’(x)+g’(x)

Доказательство: следует непосредственно из определения производной и свойств предела суммы.

Теорема: (связи между непрерывностью функции и существование производной)

Пусть $ f’(x)Þ функция f(x) – непрерывна.

Доказательство: Пусть f(x) определена в О(х0) и lim[f(x)-f(x0)]/(x-x0)=f’(x0)<¥Þ [f(x)-f(x0)]/(x-x0)=f(x0)+a(x-x0)[2]

x®x°

[f(x)-f(x0)]=f’(x0)(x-x0)+a(x-x0)(x-x0) при х®х0

lin[f(x)-f(x0)]=limf’(x0)(x-x0)+lima(x-x0)(x-x0)=0+0=0Þlinf(x)=f(x0) то есть f(x) непрерывна в точки х0

x®x° x®x° x®x° x®x°

Замечание: обратное утверждение неверно, из-за непрерывности функции в точке х0 не следует существование функции в этой точки.

y=|х

Непрерывна в точки х0=0

limx, x³0

x®+0

lim|x|= =0

lim(-x), x<0

x®-0

y(0)=0

limy(x)=limy(x)=y(0)=0 Û $ limy(x)=y(0)=0 Þ функция непрерывна

x®+0 x®-0 x®0

lim∆y/∆x-не существует, действительно х®+0Þy(x)=x

x®0

lim[y(x)-y(0)]/x=lim(x-0)/x=1

x®+0 x®+0

x®-0Þy(x)=-x

lim[y(0)-y(x)]/x=lim(0-x)/x=-1 то есть lim∆y/∆x – не существует

x®-0 x®-0 х®0

Теорема: Пусть $ u’(x) и v’(x), тогда $(uv)’=u’v+v’u

Доказательство: Зададим приращение ∆х в точки х. Рассмотрим: lim[∆(uv)]/∆x=

x®0

lim[1/∆x][u(x+∆x)v(x+∆x)-u(x)v(x)]=lim[1/∆x][ u(x+∆x)v(x+∆x)-u(x)v(x+∆x)+u(x)v(x+∆x)-u(x)v(x)=

x®0 x®0

lim[(v(x+∆x))(u(x+∆x)-u(x))]/∆x+lim[(u(x))(v(x+∆x)-v(x))]/∆x=v(x)u’(x)+u(x)v’(x)

x®0 x®0

Теорема: (о произведение частного)

Пусть $ u’(x) и v’(x), v’(x)¹0 в О(х), тогда $(u/v)’=[u’v-v’u]/v2

Доказательство: (u/v)’=[u(1/v)]’=[u’(1/v)]+[(1/v)’u]. Функция u(x) и v(x) –непрерывны в точки х0.

lim[∆(1/v)/∆x]=lim[1/∆x][1/(v(x+∆x))-1/v(x)]=lim[[v(x)-v(x-∆x)]/[∆xv(x)x(x+∆x)]]-[v’(x)/v2(x)]

x®0 x®0 ∆x®0

(u/v)’=u’(1/v)-(uv)’/v2=[u’v-uv’]/v2 что и требовалось доказать


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: