Решение задачи Дирихле для круга

Пусть в плоскости Oxy имеется круг радиуса R с центром в начале координат и на его окружности задана некоторая функция , где j - полярный угол. Требуется найти функцию u (r, j), непрерывную в круге, включая границу, удовлетворяющую внутри круга уравнению Лапласа

(1)

и на окружности круга принимающую заданные значения

.

Задача (1) очень важна в физических приложениях. Ее можно интерпретировать как задачу нахождения электростатического потенциала внутри круга по известному распределению потенциала на границе. Другая интерпретация – модель мыльной пленки. Если сделать из проволоки кольцо и изогнуть его так, чтобы изгиб задавался функцией , а затем погрузить в мыльный раствор, то мыльная пленка натянется в соответствии с формой проволоки. Возвышения точек пленки описываются решением задачи (1), если смещения малы. Будем решать задачу в полярных координатах. Перепишем уравнение (1) в этих координатах:

или

. (2)

Будем искать решение методом разделения переменных, полагая

. (3)

Подставляя в уравнение (2), получим:

или

. (4)

Так как левая часть этого равенства не зависит от r, а правая от j, следовательно, они равны постоянному числу, которое мы обозначаем через . Таким образом, равенство (4) дает два уравнения:

, (5)

. (6)

Общее решение уравнения (5) будет

. (7)

Уравнение (6) – есть уравнение Эйлера. Ищем его решение в виде . Подставляя в (6), получим:

.

Сокращая это уравнение на , получаем , то есть, .

Итак, имеются два частных линейно независимых решения и . Общее решение уравнения (6) будет

. (8)

Выражения (7) и (8) подставляем в (3):

. (9)

Функция (9) будет решением уравнения (2) при любом значении k, отличном от нуля. Если k = 0, то уравнения (5) и (6) принимают вид:

, ,

и, следовательно,

. (10)

Решение должно быть периодической функцией от j, так как при одном и том же значении r при j и j + 2p мы должны иметь одно и то же значение решения, потому что рассматривается одна и та же точка круга. Поэтому очевидно, что в формуле (10) должно быть . Далее, мы ищем решение, непрерывное и конечное в круге. Следовательно, в центре круга при r = 0 решение должно быть конечным, и потому в формуле (10) должно быть , а в формуле (9) .

Таким образом, правая часть (10) обращается в произведение , которое мы обозначим через . Итак,

.

Мы будем составлять решение нашей задачи в виде суммы решений вида (9), так как в силу линейности и однородности уравнения Лапласа сумма решений есть также решение. Сумма должна быть периодической функцией от j. Это будет так, если каждое слагаемое будет периодической функцией от j. Для этого k должно принимать целые значения. Мы можем ограничиться только положительными значениями так как в силу произвольности постоянных A, B, C, D отрицательные значения k новых частных решений не дают. Итак,

(11)

(постоянная включена в и ). Подберем теперь произвольные постоянные и так, чтобы удовлетворялось краевое условие . Подставляя в равенство (11) , получаем:

. (12)

Чтобы имело место равенство (12) нужно, чтобы функция разлагалась в ряд Фурье в интервале (-p, p) и чтобы и были ее коэффициентами Фурье. Следовательно, и должны определяться по формулам:

, . (13)

Итак, ряд (11) с коэффициентами, определенными по формулам (13), будет решением нашей задачи, если он допускает двукратное дифференцирование по r и j.

Интегральная формула Пуассона. Преобразуем формулу (11). Подставляя вместо и их выражения (13) и произведя тригонометрические преобразования, получим:

. (14)

Преобразуем выражение, стоящее в квадратных скобках:

=

=

=. (15)

Заменяя выражение, стоящее в квадратных скобках в формуле (14), выражением (15), получим:

. (16)

Формула (16) называется интегралом Пуассона.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: