Главные оси и главные моменты инерции. Радиус инерции

При изменении угла величины Ix1, Iy1 и Ix1y1 изменяются. Найдем значение угла, при котором Ix1 и Iy1 имеют экстремальные значения; для этого возьмем от Ix1 или Iy1 первую производную по и преравняем ее нулю:

или

откуда Эта формула определяет положение двух осей, относительно одной из которых осевой момент инерции максимален, а относительно другой - минемален.

Такие оси называют главными. Моменты инерции относительно главных осей называются главными моментами инерции.

Значения главных моментов инерции найдем из формул и, подставив в них из формулы (1.28), при этом используем известные формулы тригонометрии для функций двойных углов.

После преобразований получим следующую формулу для определения главных моментов инерции:

Исследуя вторую производную можно установить, что для данного случая (Ix < Iy) максимальный момент инерции Imax имеет место относительно главной оси, повернутой на угол по отношению к оси х, а минимальный момент инерции - относительно другой, перпендикулярной оси. В большинстве случаев в этом исследовании нет надобности, так как по конфигурации сечений видно, какая из главных осей соответствует максимуму момента инерции.

Радиус инерции сечения — геометрическая характеристика сечения, связывающая момент инерции фигуры с ее площадью следующими формулами:

Отсюда, формула радиуса инерции:

Таким образом, радиус инерции отражает отношение жесткости стержня на изгиб () и на сжатие ().

В сопротивлении стержней продольному изгибу (потере устойчивости прямолинейной формы при сжатии) основную роль играет гибкость стержня, а значит и величина наименьшего радиуса инерции сечения. Таким образом, большую экономичность будут иметь те сечения, у которых наименьший радиус инерции равен наибольшему, то есть сечения у которых все центральные моменты инерции равны, а эллипс инерции обратился бы в круг.

Единица измерения СИ — м. В строительной литературе чаще записывается в миллиметрах или сантиметрах, ввиду небольшой величины на практике.

Если моменты инерции и являются главными моментами инерции, то и — также являются главными радиусами инерции В некоторой литературе радиус инерции обозначается просто

17. Кручение. Напряжения, деформации, закон Гука при кручении

Этот вид деформации происходит, когда к стержню прикладываются только крутящие моменты, например, на кручение работает карданный вал автомобиля. На кручение рассчитываются и другие валы, где крутящий момент имеет превалирующее значение в сравнении с другими внешними силами (валы электродвигателей, редукторов и др.).

Рассмотрим кручение консольно закрепленного стержня крутящим моментом, приложенным к свободному концу стержня.

Нанесем на стержень прямоугольную сетку. Под действием крутящего момента стержень закрутится на некоторый угол и сетка исказится. Горизонтальные линии станут наклонными, а прямоугольники превратятся в паралелограммы. При этом, как показывают опыты, расстояние между параллельными сечениями не изменяются, то есть при кручении не происходит растяжения или сжатия стержня. Следовательно, при кручении отсутствуют нормальные напряжения, а возникают только касательные напряжения. К такому же выводу приводит и тот факт, что на поверхности стержня прямоугольники превращаются в паралелограммы. Подобная картина наблюдалась в деформации сдвига (среза), а там в сечении возникали только касательные напряжения.

Если внешними являются только крутящие моменты, то внутренними будут тоже крутящие моменты.

Исходя из выше изложенного, можно записать условие прочности

τ = Мкр/ Wр ≤ [τ] - условие прочности при кручении

Wр - момент сопротивления сечения кручению (см. геометрические характеристики сечений).

Кроме прочностных расчетов приходится определять углы закручивания стержня. Формула для определения угла закручивания имеет вид

φ = Мкр*l/(G* Jр), рад.

Здесь Мкр – внутренний крутящий момент на участке стержня; l – длина участка стержня;

G – модуль сдвига материала стержня; Jр – полярный момент инерции сечения участка стержня.

18. Основные определения ТММ: механизм, звено, стойка, кинематическая пара, элемент звена

Звено – деталь или несколько деталей, соединенных между собой неподвижно.

Кинематическая пара (КП) – подвижное соединение двух звеньев. КП не материальная величина, она характеризует соединение двух звеньев, находящихся в непосредственном соприкосновении.

Механизм – кинематическая цепь, в которой при заданном движении одного или нескольких ведущих звеньев относительно неподвижного звена (стойки), все остальные звенья (ведомые) совершают определенное движение. Ведомое звено, совершающее движение, ради которого создан механизм, называется рабочим звеном.

Элементом звена называются поверхности, линии или точки, по которым оно может соприкасаться с другим звеном. В зависимости от вида элемента различают кинематические пары высшие (элемент пары – точка или линия) и низшие (элемент – поверхность).

19. Кинематические пары. Классификация кинематических пар, примеры, изображение на кинематических схемах.

Подвижное соединение двух соприкасающихся звеньев называется кинематической парой. Кинематическую пару можно определить также как соединение двух соприкасающихся звеньев, допускающее их относительное движение.

Классификация[

По числу связей на относительное движение:

· от одной до пяти связей. Это связано со степенями свободы, которых для материального тела всего шесть; исключая (связывая) по одной, мы получаем пять вариантов связей.

По контакту между звеньями:

· высшие (контакт по точке или линии);

· низшие (контакт по поверхности).

·

Рис. 2.2. Примеры высших и низших кинематических пар:

а — низшая (вращательная); б — высшая (шарплоскость); в — вычшая (цилиндрплоскость); г — низшая (сферическая); д — низшая (цилиндри ческая); е — низшая (поступательная).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: