Закон сохранения импульса

С первым из них законом сохранения массы мы уже познакомились. Сформулируем закон сохранения количества движения. Второй закон Ньютона гласит, что изменение количества движения жидкого объёма за единицу времени равно сумме всех приложенных к нему внешних (массовых и поверхностных) сил. Количество движения и силы - величины векторные, поэтому уравнение, выражающее этот закон, является векторным. Ему соответствует система трёх уравнений, связывающих проекции векторов на оси координат.

Выделим в пространстве объём жидкости и ограничим его контрольной поверхностью . Бесконечно малый объём имеет массу и количество движения . Количество движения всего объёма равно . Изменение количества движения при перемещении этого объёма за единицу времени составит

(1.6.1)

Вектор внешних массовых сил, плотность распределения которых обозначим через , находим аналогично: на элементарный объём массой действует сила , следовательно, внешняя массовая сила, действующая на весь объём , равна

. (1.6.2)

Плотность распределения внешней поверхностной силы (напряжение) на контрольной поверхности обозначим через , учитывая, что - нормаль к . Тогда на элементарную площадку действует сила , а на всю поверхность действует результирующая поверхностная сила

. (1.6.3)

Приравняв изменение количества движения (1.6.1) сумме сил (1.6.2) и (1.6.3), получим уравнение, выражающее закон сохранения количества движения (импульса):

. (1.6.4)

Это векторное уравнение равносильно трём скалярным уравнениям, которое можно записать, проектируя все слагаемые на координатные оси х,у,z. Например, в проекции на ось х имеем

(1.6.5)

Уравнение (1.6.4) используется и в приведённом выше виде в виде гидравлического уравнения количества движения или в виде систем дифференциальных уравнений, получаемых из (1.6.4), когда контрольный объём бесконечно мал.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: