Избежать теплового удара


Почти вся потребляемая на борту энергия в конечном счете превращается в тепло. К этому добавляется нагрев солнечным излучением. На небольших спутниках, чтобы не допустить перегрева, применяют тепловые экраны, отражающие солнечный свет, а также экранно-вакуумную теплоизоляцию — многослойные пакеты из чередующихся слоев очень тонкой стеклоткани и полимерной пленки с алюминиевым, серебряным или даже золотым напылением. Снаружи на этот «слоеный пирог» надевается герметичный чехол, из которого откачивается воздух. Чтобы сделать солнечный нагрев более равномерным, спутник можно медленно поворачивать. Но таких пассивных методов хватает лишь в редких случаях, когда мощность бортовой аппаратуры мала.
На более или менее крупных космических аппаратах, чтобы избежать перегрева, необходимо активно избавляться от лишнего тепла. В условиях космоса есть лишь два способа это сделать: путем испарения жидкости и тепловым излучением с поверхности аппарата. Испарители применяют редко, ведь для них надо брать с собой запас «хладагента». Гораздо чаще используют радиаторы, помогающие «излучать» тепло в космос.


Теплоотдача излучением пропорциональна площади поверхности и, по закону Стефана — Больцмана, четвертой степени ее температуры. Чем больше и сложнее аппарат, тем труднее его охлаждать. Дело в том, что энерговыделение растет пропорционально его массе, то есть кубу размера, а площадь поверхности — пропорционально только квадрату. Допустим, от серии к серии спутник увеличился в 10 раз — первые были с коробку из-под телевизора, последующие стали величиной с автобус. Масса и энергетика выросли при этом в 1000 раз, а площадь поверхности — только в 100. Значит, с единицы площади должно уходить в 10 раз больше излучения. Чтобы обеспечить это, абсолютная температура поверхности спутника (в Кельвинах) должна стать выше в 1,8 раза (4— 10). Например, вместо 293 К (20 °С) — 527 К (254 °С). Понятно, что так нагревать аппарат нельзя. Поэтому современные спутники, выйдя на орбиту, ощетиниваются не только панелями солнечных батарей и раздвижными антеннами, но и радиаторами, как правило, торчащими перпендикулярно поверхности аппарата, направленной на Солнце.
Но сам радиатор — это лишь один из элементов системы терморегулирования. Ведь к нему еще надо подвести подлежащее сбросу тепло. Наибольшее распространение получили активные жидкостные и газовые системы охлаждения замкнутого типа. Теплоноситель обтекает греющиеся блоки аппаратуры, затем поступает в радиатор на наружной поверхности аппарата, отдает тепло и снова возвращается к его источникам (примерно так же работает система охлаждения в автомобиле). В систему терморегулирования, таким образом, входят разнообразные внутренние теплообменники, газоводы и вентиляторы (в аппаратах с гермокорпусом), термомосты и тепловые платы (при негерметичной архитектуре).
На пилотируемых аппаратах тепла приходится сбрасывать особенно много, а температуру выдерживать в очень узком диапазоне — от 15 до 35 °С. Если радиаторы выйдут из строя, на борту придется резко сокращать энергопотребление. К тому же на долговременной станции от всех критических элементов оборудования требуется ремонтопригодность. Значит, должна быть возможность по частям отключать отдельные узлы и трубопроводы, сливать и заменять теплоноситель. Сложность системы терморегулирования неимоверно возрастает из-за наличия множества разнородных взаимодействующих модулей. Сейчас на каждом модуле МКС действует собственная система терморегулирования, а большие радиаторы станции, установленные на основной ферме перпендикулярно солнечным батареям, используются для работы «под большой нагрузкой» во время научных экспериментов с высоким потреблением энергии.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: