Определение и свойства интеграла

Если F(x) – одна из первообразных функции f(x) на промежутке J, то первообразная на этом промежутке имеет вид F(x)+C, где CÎR.

Определение. Множество всех первообразных функции f(x) на промежутке J называется определенным интегралом от функции f(x) на этом промежутке и обозначается ò f(x)dx.

ò f(x)dx = F(x)+C, где F(x) – некоторая первообразная на промежутке J.

f – подынтегральная функция, f(x) – подынтегральное выражение, x – переменная интегрирования, C – постоянная интегрирования.

Свойства неопределенного интеграла.

(ò f(x)dx) ¢ = ò f(x)dx,

ò f(x)dx = F(x)+C, где F ¢(x) = f(x)

(ò f(x)dx) ¢= (F(x)+C) ¢= f(x)

ò f ¢(x)dx = f(x)+C – из определения.

ò k f (x)dx = k ò f¢(x)dx

если k – постоянная и F ¢(x)=f(x),

ò k f (x)dx = k F(x)dx = k(F(x)dx+C1)= k ò f¢(x)dx

ò (f(x)+g(x)+...+h(x))dx = ò f(x)dx + ò g(x)dx +...+ ò h(x)dx

ò (f(x)+g(x)+...+h(x))dx = ò [F ¢(x)+G ¢(x)+...+H ¢(x)]dx =

= ò [F(x)+G(x)+...+H(x)] ¢dx = F(x)+G(x)+...+H(x)+C=

= ò f(x)dx + ò g(x)dx +...+ ò h(x)dx, где C=C1+C2+C3+...+Cn.

Интегрирование

Табличный способ.

Способ подстановки.

Если подынтегральная функция не является табличным интегралом, то возможно (не всегда) применить этот способ. Для этого надо:

разбить подынтегральную функцию на два множителя;

обозначить один из множителей новой переменной;

выразить второй множитель через новую переменную;

составить интеграл, найти его значение и выполнить обратную подстановку.

Примечание: за новую переменную лучше обозначить ту функцию, которая связана с оставшимся выражением.

Примеры:

1. ò xÖ(3x2–1)dx;

Пусть 3x2–1=t (t³0), возьмем производную от обеих частей:

6xdx = dt

xdx=dt/6

ó dt 1 1 ó 1 1 t 2 2 1 ———Ø

ô— t 2 = — ô t 2dt = – ——– + C = —Ö 3x2–1 +C

õ 6 6 õ 6 3 9

2. t

ò sin x cos 3x dx = ò – t3dt = – – + C

Пусть cos x = t

-sin x dx = dt

Метод преобразования подынтегральной функции в сумму или разность:

Примеры:

ò sin 3x cos x dx = 1/2 ò (sin 4x + sin 2x) dx = 1/8 cos 4x – ¼ cos 2x + C

ó x4+3x2+1 ó 1 1

ô———— dx = ô(x2+2 – ——–) dx = — x2 + 2x – arctg x + C

õ x2+1 õ x2+1 3

Примечание: при решении этого примера хорошо делать многочлены ”углом”.

По частям

Если в заданном виде взять интеграл невозможно, а в то же время, очень легко находится первообразная одного множителя и производная другого, то можно использовать формулу.

(u(x)v(x))’=u’(x)v(x)+u(x)v(x)

u’(x)v(x)=(u(x)v(x)+u(x)v’(x)

Проинтегрируем обе части

ò u’(x)v(x)dx=ò (u(x)v(x))’dx – ò u(x)v’(x)dx

ò u’(x)v(x)dx=u(x)v(x)dx – ò u(x)v’(x)dx

Примеры:

ò x cos (x) dx = ò x dsin x = x sin x – ò sin x dx = x sin x + cos x + C

x = u(x)

cos x = v’(x)


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: