Понятие о теории бета-распада. Слабое взаимодействие

В теории Ферми процесс b-распада рассматривается как результат взаимодействия нуклона с новым видом поля (электроно-нейтринным полем), в результате которого нуклон, находясь в одном из двух возможных нуклонных состояниях – протонном или нейтронном - испускает b-частицу и нейтрино и переходит в другое нуклонное состояние. Нуклоны являются источниками b-частиц и нейтрино, которые рождаются непосредственно в момент преобразования нуклонов в электроно-нейтринном поле. Такого рода поля в настоящее время называются электрослабыми.Все известные науке взаимодействия связаны всего с четырьмя типами полей: сильными (ядерными), электромагнитными, электрослабыми и гравитационными. Если расположить все эти взаимодействия по их относительной интенсивности, то получим следующую картину:

сильное 1 электромагнитное ~ 10-2 электрослабое ~ 10-14 гравитационное ~ 10-40.

Теория Ферми позволила рассчитать b-спектры и влияние на форму b-спектров кулоновского поля ядра и электронной оболочки атома. При малой энергии вылетающей заряженной частицы форма любого β-спектра искажается кулоновским взаимодействием между ядром и вылетающей из него β-частицей ядра (рис. 3.5.5). Кулоновское поле ядра оказывает на b--частицы тормозящее действие. В результате спектр в «мягкой» (низкоэнергетической) области энергий оказывается обогащенными частицами. β--Спектры с граничной энергией меньше 1 МэВ у средних и тяжелых ядер вообще не имеют максимума, а монотонно спадают. В спектрах b+-распада мягкая область спектра, наоборот, оказывается обедненной. Поле электронной оболочки атома оказывает на спектр незначительное влияние.

48. Природа гамма-излучения. Энергетический спектр гамма-излучения и связь с энергетическими уровнями ядра.

Гамма излучение (g‑излучение) - испускание кванта электромагнитного излучения при спонтанном переходе ядра с более высокого энергетического уровня на любой нижележащий,в этом случае А и Z ядра не изменяются Излучение g-кванта является основным процессом освобождения ядра от избыточной энергии, при условии, что эта энергия не превосходит энергию связи нуклона в ядре. g-квант - это порция энергии E g = электромагнитного поля Переходы, при которых испускаются g-кванты, называются радиационными. Радиационный переход может быть однократным (переход γ20 на рис. 3.6.1) или каскадным, когда происходит испускание нескольких g-квантов в результате ряда последовательных радиационных переходов (переходы γ21 и γ10 на рис. 3.6.1) Энергияg-кванта определяется разностью энергий уровней, между которыми происходит переход:

Применим законы сохранения энергии и импульса к свободному (не связанному ядру):

где Т яд и Р яд – кинетическая энергия и импульс ядра отдачи соответственно, Р γ – импульс γ-кванта. Из уравнений (3.6.2) получаем

Таким образом, Т яд = (10-6 ÷ 10-5) Е, т.е. γ-квант уносит подавляющую часть энергии возбуждения ядра. Из проведенного рассуждения очевидно также, что энергетический спектр γ-квантов дискретен, так как энергетическая ширина Г уровня (1.7.1) обычно много меньше расстояния между уровнями.

g-Квант - этоне только частица, но и волна. Приведенная длина волны ( = λ/2π ) g-кванта, опр. вз. с другимичастицами, связана с его энергией соотношением или .

Образование γ-квантов происходит под действием электромагнитных сил и обусловлено взаимодействием отдельных нуклонов ядра с электромагнитным полем, создаваемым движением всех нуклонов ядра. Поэтому γ-излучение, в отличие от β-распада, явление внутриядерное Испускание или поглощение g-квантов свободным нуклоном запрещено совместным действием законов сохранения энергии и импульса

49. Мультипольность гамма- излучения и правила отбора.

Фотон может обладать только полным моментом L = 1, 2, 3…Состояние свободно распространяющегося электромагнитного поля с определенным полным моментом и четностью называется мультиполем Излучение, уносящее момент L = 1, называется дипольным, L = 2 – квадрупольным L = 3 - октупольным и т.д. Для обозначения радиационных переходов определенной мультипольности используются следующие обозначения. Радиационные переходы, вызванные перераспределением электрических зарядов в ядре, называют электрическими и обозначают буквой E (E1 - дипольные (L = 1), Е2 - квадрупольные (L = 1), и т.д.), переходы, вызванные перераспределением магнитных моментов нуклонов называют магнитными переходами (дипольные - M1, квадрупольные - М2 и т.д.). В соответствии с законом сохранения спина (см. §4.4) существует следующие соотношение между спином I н начального и спином I к конечного ядра и моментом L, уносимым g‑квантом:

(3.6.5)

Это соотношение называется правилом отбора по спину. Согласно этому соотношению дипольные γ‑кванты (L = 1) могут быть испущены при переходах между состояниями с Δ I = 0, ±1, кроме (0-0)-переходов; квадрупольные γ‑кванты (L = 2) – при переходах с Δ I = 0, ±1, ±2, кроме (0-0)-, (0-1)- и (1-0)-переходов; октупольные γ‑кванты (L = 2) – при переходах с Δ I = 0, ±1, ±2, кроме (0-0)-, (0-2)- и(2-0)- и т.д.

Еще одно правило отбора по четности связано с выполнением закона сохранения четности (см. §4.4). Разрешенное изменение четности Р ядра, испускающего электрический γ-квант, описывается формулой Р н/ Р к = (-1) L, (3.6.5) а для ядра, испускающего магнитный γ-квант, - формулой Р н/ Р к = (-1) L+ 1, (3.6.7)

где Р н и Р к –четности начального и конечного состояний ядра. Совокупность соотношений (3.6.5) - (3.6.7) обычно называют правилами отбора для γ-излучения.

Кроме радиационных переходов, то есть испускания g-квантов, существует еще один процесс потери ядром энергии возбуждения – испускание электронов внутренней конверсии. В этом процессе, который конкурирует с g-излучением, ядро передает энергию возбуждения посредством виртуального (см. §1.9 п.8 и формулу 1.9.4), а не реального g-кванта одному из электронов оболочки атома. Испускаемые электроны имеют дискретный энергетический спектр: Т е = ЕIi где Ii – энергия связи электрона на i -оболочке


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: