Генераторные датчики

К группе генераторных датчиков можно отнести преобразователи различных видов энергии в электрическую. Наибольшее примене­ние в качестве датчиков находят индукционные, термоэлектриче­ские и пьезоэлектрические преобразователи.

Индукционные датчики.

Принцип действия индукционных датчи­ков основан на законе электромагнитной индукции, дающем воз­можность непосредственного преобразования входной: измеряемой Величины в ЭДС без источника дополнительной энергии. К этим датчикам относятся тахогенераторы постоянного и переменного то­ка, представляющие собой небольшие электромашинные генерато­ры, у которых выходное напряжение пропорционально угловой ско­рости вращения вала генератора. Тахогенераторы используются как датчики угловой скорости.

Тахогенераторы постоянного тока бывают двух ти­пов: с возбуждением от постоянных магнитов и с электромагнит­ным возбуждением от независимого источника постоянного тока.

Так как индуктированная электродвижущая сила пропорциональ­на не только скорости вращения, но и магнитному потоку:

,

то основным требованием к тахогенераторам является постоянст­во магнитного потока.

Тахогенераторы переменного тока также бывают двух типов: синхронные и асинхронные.

Синхронные тахогенераторы имеют простую конструкцию и со­стоят из статора (наружной обмотки) и ротора, выполненного в виде постоянного магнита с несколькими полюсами (рис. 7.12). При вращении ротора в статоре индуктируется ЭДС, значение и частота которой определяются известными формулами:

Следовательно, с изменением скорости вращения вместе с ЭДС изменяется и частота. Это создает неудобство при использовании такого датчика в автоматических устройствах с индуктив­ностью и емкостью, так как при изменении скорости вра­щения будут изменяться пара­метры (индуктивное и емкост­ное сопротивления) нагрузки и самого тахогенератора, бла­годаря чему линейность ста­тической характеристики нару­шается. Это явление наклады­вает определенные ограниче­ния в применении синхронных тахогенераторов. Их применяют лишь в качестве индикаторов для непосредственного измере­ния скорости вращения.

Асинхронный тахогенератор нашел широкое применение в ав­томатических схемах управления, так как его частота не зависит от скорости вращения ротора, что создает линейность статической характеристики.

Конструктивно асинхронный тахогенератор представляет собой асинхронный двухфазный двигатель с полым ротором. Две обмотки статора сдвинуты на 90º и к одной из них подводится постоянное по амплитуде и частоте напряжение возбуждения, создающее маг­нитный поток Ф1 (рис. 7.13). Этот поток никакого влияния на вторую обмотку при неподвижном роторе не оказывает, так как пер­пендикулярен ее магнитной оси, поэтому при неподвижном роторе вторая обмотка никакого напряжения создавать не будет. Но если ротор начнет вращаться, то его стенки будет пересекать поток Ф1и в них появятся токи, создающие магнитный поток Ф2, уже направленный по магнитной оси второй катушки.

Так как поток Ф1 изменяется по синусоиде, то и поток Ф2 будет тоже синусоидаль­ным и будет наводить вследствие этого во второй обмотке индук­тированную ЭДС

где f — частота, определяемая только частотой напряжения возбуж­дения; К - коэффициент пропорциональности.

От скорости вращения зависит только поток Ф2, создаваемый током в роторе, который зависит от потока Ф1 и частоты враще­ния п:

,

Так как поток Ф1 прямо пропорционален напряжению возбужде­ния, поддерживаемому постоянным, то

т. е. индуцированная во второй обмотке электродвижущая сила прямо пропорциональна скорости вращения ротора.

Термоэлектрические датчики предназначены для измерения температуры. Они состоят из двух термоэлектродов 1 и 2, изготов­ляющихся из разнородных проводников (рис. 7.14). Одни концы этих проводников сварены (спаяны), а дне других служат выходом датчика, откуда снимается выходное напряжение. Точка спая термоэлектродов помещается в область контролируемой температуры. 

Если температура свободных «холодных» концов термопары  t отличается от температуры горячего спая U, то в силу термоэлектри­ческого эффекта в термоэлектродах возникает термо-ЭДС E 1, пропорциональная разности температур. Это можно объяснить тем, что энергия свободных электронов в различных металлах по-разному растет с ростом температуры. Если вдоль проводника существует перепад температуры, то электроны на горячем конце приобретают более высо­кие энергии и скорости, чем на холод­ном, благодаря этому возникает движе­ние электронов от горячего конца к хо­лодному, разное в разных металлах.

При наличии замкнутой цепи разное движе­ние электронов создает ток, который можно трактовать как результат возник­новения термоэлектродвижущей силы в горячем спае. За счет этой ЭДС появ­ляется выходное напряжение U вых = E 1 = С (t 2 - t 1), где С — коэффициент пропорциональности, завися­щий от материала проводников термопары. Возникновение тер­мо-ЭДС позволяет термопару (термоэлемент) называть датчиком-генератором.

Статические характеристики большинства термопар нелиней­ные. Чаще всего используются следующие термопары: хромель — копель (до 600°С длительный нагрев); хромель — алюмель (до 1000°С); платина — платинородий (до 1300°С); вольфрам — мо­либден (до 2100°С). Термо-ЭДС при максимальной рабочей тем­пературе не превышает 10 — 50 мВ.

Все термопары обладают инерционностью. Постоянные времени термопар в зависимости от конструкции могут быть от десятых долей секунды до не­скольких сотен секунд.

Пьезоэлектрические датчики.

Они применяются для получения элек­трических зарядов. Обра­зующихся на поверхно­сти некоторых кристал­лов при их сжатии. Эти датчики чаще всего из­готовляют из кварца. Та­кой датчик представляет собой кварцевую пластину, на одной из сторон которой напыле­ны (или приклеены токопроводящим клеем) электроды, к кото­рым припаиваются вывода (рис. 7.15).

При сжатии кварцевой пластины силой Р на ее противополож­ных поверхностях, а следовательно, и на электродах в силу прямо­го пьезоэлектрического эффекта возникают электрические заряды.

Величина заряда пропорциональна сжимающей силе Р, т. е. Q = dP, где d — коэффициент пропорциональности, называемый пьезомодулем.

При изменяющейся силе Р появляется выходное напряжение:

,

где С д — емкость датчика (конденсатора, образованного электро­дами и кварцевым диэлектриком); С м — емкость монтажа.

Из этой формулы видно, что, зная выходное напряжение, мож­но определить силу Р. Если Р постоянна, то 0.

Пьезоэлектрические датчики безынерционны. Они используются для измерения сил, давления, вибрации и для других измерений, в которых прямо или косвенно проявляются силовые воздействия. Выходное напряжение пьезоэлектрических датчиков составляет от единиц милливольт до единиц вольт. Для усиления выходного на­пряжения пьезоэлектрического датчика необходимо применять уси­литель с очень большим входным сопротивлением.

Фотоэлектрические датчики, фотоэлектрические реле.

К фото­электрическим датчикам генераторного типа относятся фотоэлементы с внешним фотоэффектом, которые в отличие от фо­тоэлементов с внутренним фотоэффектом (фотосопротивлений) под действием света выделяют свободные электроны. Этим создается разность потенциалов, возникает электрический ток, т. е. происхо­дит непосредственное преобразование света в электрическую вели­чину без модуляции энергии от постороннего источника. Конструк­тивно фотоэлементы генераторного типа бывают двух исполне­ний — вакуумные и полупроводниковые.

Вакуумные фотоэлементы вырабатывают сигнал (электрический ток) небольшой величины, и он не может непосредственно воздей­ствовать на исполнительный механизм. В этом случае совместно с вакуумным фотоэлементом применяют электронный усилитель.

Полупроводниковые фотоэлементы (фотодиод, фототранзистор) вырабатывают сигнал, величина которого в ряде случаев достаточ­на для непосредственного воздействия на измерительный прибор.

В настоящее время более широкое применение получили полу­проводниковые фотоэлементы, так как помимо большего по вели­чине вырабатываемого сигнала они имеют сравнительно с вакуум­ными меньшие габаритные размеры, больший срок службы, возмож­ность эксплуатации в местах, подверженных вибрации и ударам. Недостатком полупроводникового фотоэлемента является зависи­мость его характеристик от температуры окружающей среды (в ва­куумных фотоэлементах эта зависимость отсутствует).

Принципиальная схема варианта фотодатчика, имеющего ре­лейную характеристику, представлена на рис. 7.16. Если фотодиод Д не освещен, его внутреннее сопротивление велико, транзистор Т1 закрыт и реле P1 выключено. При освещении фотодиода внутрен­нее сопротивление его резко уменьшается и возникает ток в цепи: + Е K — эмиттер — база транзистора — фотодиод Д1 - Е к. Транзистор открывается, реле Р1 включается. При повторном затемнении фотодиода его внутреннее сопротивление опять резко увеличивает­ся и реле Р1 выключается. Диод Д2 предохраняет транзистор Т1 от пробоя.

Фотоэлектрические датчики генераторного типа нашли широкое применение в системах автоматического контроля: для измерения силы света различных источников, освещенности, фотометрирования ультрафиолетовой радиа­ции и т. д. Путем фотоэлектриче­ского измерения радиации, ярко­сти или цвета накаленного тела можно судить о его температуре. В данном случае имеется после­довательное преобразование тем­пературы в лучистую энергию и лучистой энергии в электриче­скую.

Такие фотоэлектрические датчики называются также оптическими пирометрами. Фактически здесь сосредоточены два дат­чика: оптический и электрический. Оптический датчик относится к датчикам генераторного типа, так как преобразование теплоты в лучеиспускание происходит непосредственно, без вспомогатель­ного источника энергии.

Фотоэлектрические датчики, имеющие на выходе электрический ток, легко превращаются в фотоэлектрическое реле путем включе­ния в цепь этого тока электрического реле. В качестве реле исполь­зуются электромагнитные или бесконтактные. Особенно удобны для этой цели тиратроны, выполняющие одновременно функции усили­телей и реле. Фотоэлектрические реле получили также широкое применение в различных схемах автоматики — в сигнализации, бра­ковке, сортировке, счете, защите и т. д.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: