Студопедия
Обратная связь


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram


Универсальный регулятор скорости (УРС)


Рис. 8.1 - Принципиальная схема УРС приведена на рис. 8.1.

В блоке цилиндров 1 расположены поршни 2. Золотниково-распределительное устройство 3 обеспечивает образование двух полостей – полости нагнетания и полости всасывания рабочей жидкости. Поршни при помощи штоков 4 соединены с качающейся шайбой 6. Шайба помещена в чашку 5. Шарнир 7 обеспечивает передачу вращения от входного вала, жестко связанного с блоком цилиндров, качающейся шайбе. В основу данной машины заложен кривошипно-шатунный механизм (рис. 8.2).


Рис. 8.2

Только таких механизмов несколько. Все они объединены в один блок. Кривошип R заменен шайбой и повернут на 90о в плоскости вращения, при этом шайба на подшипниках покоится в чашке, при помощи которой может наклоняться от начального положения на угол  +/- a. Поршни с цилиндрами разнесены от оси вращения таким образом, что угол g » 0о, и вращаются вместе с валом и шайбой.

Нетрудно убедиться, что каждый поршень будет совершать одновременно два движения: переносное (в пространстве) и относительное (возвратно-поступательное).

Для изучения существа работы гидравлической машины как преобразователя механической энергии в энергию потока жидкости и наоборот, имеет значение в основном относительное движение, в процессе которого за один оборот вала машины (за один цикл переносного движения поршень) совершает 2 хода длиной
h = 2 R * sina


Рис. 8.3

Один ход (на половине оборота вала) используется для всасывания жидкости в полость цилиндра, другой - для вытеснения ее из цилиндра (нагнетания в магистраль). Это обеспечивается специальной конфигурацией каналов золотниково-распределительного устройства (рис. 8.3).

Величина хода поршня, пропорциональна a, и, при прочих равных условиях, определяет количество подаваемой насосом жидкости. Если в процессе вращения вала с одной и той же скоростью и в одну сторону изменять угол a, например, от 20о до 0о, то будет изменяться и количество перекачиваемой жидкости от какого-то значения Q до 0 (естественно a не может быть равен или превышать 45о, обычно a = 15?30о).
При переходе  шайбы через вертикальную ось (ось “мертвых положений”), направление потока жидкости изменится на противоположное, т.е. произойдет  реверс потока жидкости и, в итоге, реверс движения выходного вала.

Так эта машина работает в роли насоса. Если же под поршни такой машины, через распределитель, подавать жидкость под давлением от какого-либо источника, то она будет гидродвигателем, в котором энергия потока жидкости будет преобразовываться в механическую энергию и через его вал передаваться управляемому рабочему органу.

То есть ротационно-поршневые машины, как и всякие другие типы гидравлических машин, в принципе обратимы (необратимыми являются машины лишь с клапанным распределением) и в этом плане они аналогичны электрическим машинам постоянного тока.

Поскольку это так, то очевидно гидропривод может быть образован из двух принципиально одинаковых машин, одна из которых регулируема и используется, например, в качестве насоса, вращаясь в одну и ту же сторону с w1 =  const, а другая  нерегулируема и используется в качестве гидродвигателя (гидромотора), для которого w2 =  var.

Именно по такой схеме в 1905 году в Америке, инженером Дженни был изобретен первый высококачественный гидравлический агрегат, предназначенный для передачи механической энергии от какого-либо источника к рабочему органу машины и регулирования скорости движения этого органа.

Этот аппарат, названный вначале “муфтой Дженни”, не был признан на родине создателя. Однако, был сразу же оценен русскими инженерами военно-морского флота, прошедшими Цусимское сражение, в результате которого для русского флота трагическую роль сыграл электропривод на башенных артиллерийских установках.Машина очень хорошо отработана, обладает большой долговечностью и надежностью. Однако, по ряду параметров (частота вращения 500 об/мин), давление 15?75 кГ/см2) не удовлетворяет требованиям некоторых современных отраслей техники, и в частности требованиям к приводам летательных аппаратов, пусковых и артиллерийских установок, танков, самоходных кранов и т.п. Пониженные скорости и рабочие давления обусловлены кинематическими особенностями машины - одношарнирным (несинхронным) соединением ведущего и ведомого звеньев (вал-блок цилиндров и ведомая шайба-блок цилиндров). Одношарнирное соединение валов, как известно, ведет к неравномерности текущей скорости ведомого звена (шайба), что в свою очередь вызывает дополнительные динамические нагрузки, в первую очередь на штоки поршней, что ведет к ограничению вышеуказанных параметров. Поэтому в дальнейшем были изобретены более совершенные аксиально-поршневые машины.





 

Читайте также:

Основные свойства капельных жидкостей

Ламинарный режим течения в круглой трубе

Местные сопротивления

Особые случаи ламинарного течения

Машины с качающимся блоком цилиндров

Вернуться в оглавление: Гидросистемы и гидромашины

Просмотров: 3015

 
 

© studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам. Ваш ip: 54.205.159.168