Студопедия
Обратная связь


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram 500-летие Реформации


Пример 2.3

Имеется три тела с одинаковыми внешними размерами, но с разными массами х1, х2 и х3. Необходимо определить энтропию, связанную с нахождением наиболее тяжелого из них, если сравнивать веса тел можно только попарно.

Последовательность действий достаточно очевидна: сравниваем вес двух любых тел, определяем из них более тяжелое, затем с ним сравниваем вес третьего тела и выбираем наибольший из них. Поскольку внешне тела неразличимы, выбор номеров тел при взвешивании будет случаен, однако общий результат от этого выбора не зависит. Пусть опыт ее состоит в сравнении веса двух тел, например, 1-го и 2-го. Этот опыт, очевидно, может иметь два исхода: А1 – х1 > х2; его вероятность р(А1) = 1/2; исход А2 - x1 < х2; также его вероятность р(А2) = 1/2.

Опыт β - сравнение весов тела, выбранного в опыте α, и 3-го - имеет четыре исхода: B1, - х1 > х3, B2х1 < х3, B3 - х2 > х3, В4 - х2 < х3; вероятности исходов зависят от реализовавшегося исхода α - для удобства представим их в виде таблицы:

Вновь, воспользовавшись формулами (2.8) и (2.9) и с учетом свойства (1) п.2.1.2, находим:

Следовательно, энтропия сложного опыта, т.е. всей процедуры испытаний:

 

Читайте также:

Сложность алгоритма

Пример 4.15

Контрольные вопросы и задания

Алфавитное кодирование с неравной длительностью элементарных сигналов. Код Морзе

Проблема алгоритмической разрешимости

Вернуться в оглавление: Теоретические основы информатики

Просмотров: 1478

 
 

© studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам. Ваш ip: 54.196.58.81