Студопедия
Обратная связь


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram 500-летие Реформации


Устройство и принцип работы цифровых измерительных приборов

<== предыдущая статья | следующая статья ==>

 

По принципу действия и конструктивному исполнению цифровые приборы разделяют на электромеханические и электронные. Электромеханические приборы имеют высокую точность, но малую скорость измерений. В электронных приборах используется современная база электроники. Несмотря на схемные и конструктивные особенности, принцип построения ЦИП одинаков.

Рис. 8.1 Структурная схема ЦИП.

 

Измеряемая величина (Х) поступает на входное устройство прибора ВУ, где происходит масштабное преобразование сигнала, затем он поступает на аналогово-цифровой преобразователь (АЦП), где аналоговый сигнал преобразуется в соответствующий код, который отображается в соответствующий код, который отображается в виде числового значения на цифровом отсчетном устройстве (ЦОУ). Для получения всех управляющих сигналов в цифровом приборе предусмотрено устройство управления. Входное устройство прибора устроено аналогично электронному прибору, а в некоторых конструкциях на его входе используется фильтр для исключения помех.

В зависимости от способа аналого-цифрового преобразования приборы разделяют на устройства прямого преобразования и компенсационные (с уравновешивающим преобразованием).

В основе работы цифровых измерительных устройств последовательного счета лежит принцип последовательного приближения значения эталонного сигнала, генерируемого схемой прибора, к значению измеряемого сигнала.

В ЦИП последовательного приближения происходит последовательное во времени сравнение измеряемой величины с известной квантованной величиной, изменяющейся по определенному алгоритму.

В ЦИУ считывания происходит одновременное сравнение измеряемой физической величины с заранее заданным набором значений эталонных сигналов.

На рисунке представлены графики, отражающие принцип работы рассмотренных типов ЦИП.

 

Рис. 8.2 Принципы преобразования измеряемого сигнала в ЦИП.

 

Основными элементами ЦИП являются триггеры, дешифраторы и знаковые индикаторы. Несколько знаковых индикаторов образуют цифровое отсчетное устройство. В ЦИП в отличие от аналоговых обязательным элементом схемы являются АЦП и цифровые отсчетные устройства (ЦОУ). Схемное решение ЦИП определяется видом АЦП.

Существуют три основных типа АЦП: интегрирующий, последовательного приближения и параллельный.

Интегрирующий АЦП усредняет входной сигнал по времени. Из трех перечисленных типов это самый точный, хотя и самый «медленный». Время преобразования интегрирующего АЦП лежит в диапазоне от 0,001 до 50 с и более, погрешность составляет 0,1–0,0003%.

Погрешность АЦП последовательного приближения несколько больше (0,4–0,002%), но зато время преобразования – от ~10мкс до ~1 мс.

Параллельные АЦП – самые быстродействующие, но и наименее точные: их время преобразования порядка 0,25 нс, погрешность – от 0,4 до 2%.

Сигнал дискретизируется по времени путем быстрого измерения его в отдельные моменты времени и удержания (сохранения) измеренных значений на время преобразования их в цифровую форму. Последовательность полученных дискретных значений может выводиться на дисплей в виде кривой, имеющей форму сигнала. Возводя эти значения в квадрат и суммируя, можно вычислять среднеквадратическое значение сигнала. Их можно использовать также для вычисления времени нарастания, максимального значения, среднего по времени, частотного спектра и т.д. Дискретизация по времени может производиться либо за один период сигнала («в реальном времени»), либо (с последовательной или произвольной выборкой) за ряд повторяющихся периодов.

К наиболее важным характеристикам ЦИП относятся: разрешающая способность, входное сопротивление, быстродействие (число измерений в секунду), точность (близость результата к истинному значению величины), помехозащищенность.

Достоинства ЦИП: высокая чувствительность и точность измерений, удобство отсчета показаний, возможность дистанционной передачи измерительной информации, возможность сочетания с ЭВМ и другими автоматическими устройствами, высокая помехозащищенность.

Недостатки: сложность устройств, высокая стоимость, невысокая надежность.

Перспективы развития ЦИП: достигнутый уровень метрологических характеристик в целом удовлетворяет требованиям практики и приближается к характеристикам соответствующих эталонов, поэтому основные усилия разработчиков направлены на повышение надежности ЦИП и создание приборов с расширенными функциональными возможностями, обеспечивающими потребителю максимальные эксплуатационные удобства, что связано с широким применением микропроцессорной техники.

В качестве примера реализации в ЦИП способа последовательного счета можно рассмотреть устройство и принцип работы частотомера.

Основными структурными элементами таких цифровых измерительных приборов являются:

ГИСЧ – генератор импульсов стабилизированной частоты;

К – ключ;

ПУ – пересчетное устройство;

Тг – триггер;

ОУ – отсчетное устройство;

Ф – формирователь импульсов;

БВВИ – блок выделения интервалов времени;

ГЛИН – генератор линейно изменяющегося напряжения:

ВУ - вычислительное устройство;

СУ – устройство сравнения и др.

Например, на приведенных рисунках представлены структурные схемы некоторых типов ЦИП.

 

а)

 

 

б)

в)

 

Рис. 8.3 Структурные схемы ЦИП, предназначенных для измерения напряжения (а), длительности интервалов времени и частоты следования импульсов (б), разности фаз сигналов (в).

 

Применение микропроцессорных систем в измерительных приборах позволяет существенно повысить их точность, расширяет возможности и упрощает управление процессом измерений, автоматизирует калибровку и проверку приборов, позволяет выполнять вычислительные операции, создавать полностью автоматизированные приборы.

Например, в ЦИП используется способность МП перестраивать свою структуру и изменять выполняемые функции под управлением подаваемых команд, что обусловливает его универсальность. С их помощью можно не только автоматически выбирать предел измерения, но и изменять структуру прибора при измерении ФВ по определенному алгоритму. При этом МП прибора может выполнять следующие функции:

· управление процессом АЦП;

· управление работой преобразователей ФВ;

· автоматический выбор пределов измерений;

· управление приборным интерфейсом;

· управление индикатором;

· диагностика неисправностей;

· обработка измерительной информации с целью повышения метрологических характеристик и др.

Выполнение МП разнообразных функций обеспечивает улучшение технико-экономических показателей приборов, что позволило создать новый класс цифровых программируемых многоканальных ИП, способных с высокой скоростью производить преобразование, обработку и отображение массивов аналоговой и цифровой информации.

ЦП с МП строятся по блочному принципу, что позволяет изменять их структуру и возможности. Они состоят из следующих основных блоков: коммутаторы, АЦП, МП, ОЗУ, ПЗУ, пульт оператора, модули сопряжения с внешними устройствами и ЭВМ. Могут содержать десятки и сотни измерительных каналов, опрашиваемых с изменяемой скоростью.

Программа прибора предусматривает выполнение основных задач по измерению, обработке и представлению измерительной информации. Это, например:

· масштабирование;

· линеаризация характеристик датчиков;

· вычисление экстремальных и средних значений;

· сравнение с уставками;

· сжатие данных;

· автокалибровка;

· самоконтроль основных функций.

В качестве встроенных средств отображения и регистрации информации используются многоразрядные цифровые индикаторы, видеодисплеи, печатающие устройства и т.п.

Ввод программы может осуществляться с пульта, с магнитных и других носителей информации. Приборы различаются степенью сложности, исполнения, обслуживания, стоимостью.

 

<== предыдущая статья | следующая статья ==>





 

Читайте также:

Шунты, добавочные резисторы

Измерение фазового сдвига сигналов

Измерительные усилители

Подготовка и проведение измерений

Классификация электроизмерительных приборов

Измерение электрической мощности и энергии

Телеизмерительные системы

Принципы построения беспроводных систем сбора первичной измерительной информации

Методы и средства измерений электрических величин. Литература

Использование метода перезаряда конденсатора для измерения частоты следования сигналов

Поисковая система телеизмерений

Методы измерения частоты следования сигналов

Условные обозначения, наносимые на шкалу прибора электромеханической системы

Приборы электромагнитной системы

Самописцы– приборы для вывода результатов измерений температуры

Вернуться в оглавление: Методы и средства измерений электрических величин

Просмотров: 8394

 
 

54.162.47.106 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.