Студопедия
Обратная связь


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации


ПЕРЕСЕЧЕНИЕ МНОГОГРАННИКА ПЛОСКОСТЬЮ ОБЩЕГО ПОЛОЖЕНИЯ

Задача на пересечение многогранника плоскостью общего положения решается с помощью вспомогательных секущих плоскостей. На рис. 4. 12а приведен пример пересечения трехгранной призмы DEFD1E1F1 плоскостью треугольника АВС.

Рис. 4.12а

Задача на рис. 4. 12а решена с помощью вспомогательных секущих плоскостей:

a(a``), проведенной через сторону АВ треугольника АВС, которая пересекла призму по треугольнику 123, точки пересечения M и N c FD принадлежат искомой линии пересечения,

и вспомогательных секущих плоскостей b(b`) и g(g``), с помощью которых найдены соответственно точки P и Q линии MPQN пересечения призмы DEFD1E1F1 c треугольником АВС.

Определение видимости на чертеже не показано.


 

Читайте также:

ПОВЕРХНОСТИ

МЕТРИЧЕСКИЕ ЗАДАЧИ И СПОСОБЫ ИХ РЕШЕНИЯ

КОНИЧЕСКИЕ СЕЧЕНИЯ

Следами плоскости называются линии пересечения плоскости с плоскостями проекций.

Вернуться в оглавление: НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ

Просмотров: 1231

 
 

© studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам