Студопедия
Обратная связь


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации


Метод Брэгга

<== предыдущая статья | следующая статья ==>

В методе Брэгга (рис. 2.1) рентгеновское излучение 1 через выходное окно рентгеновской трубки 2 и свинцовую диафрагму 3 в виде тонкого луча направляется на кристалл 4, закреплённый на гониометре 5. Отражённое кристаллом излучение 6 фиксируется на специальной фотоплёнке 7 .

Рис. 2.1. Схема спектроанализатора Брэгга.

С помощью гониометра кристалл может поворачиваться вокруг оси, проходящей через центр поверхности столика гониометра перпендикулярно этой поверхности.

Показатель преломления вещества для рентгеновского излучения близок к единице: стекло , серебро . При этом любая отполированная поверхность для рентгеновского излучения с , где - расстояние между соседними атомами, является шероховатой. В результате отражение такого излучения носит диффузный характер (отраженные лучи распространяются под разными углами).

Для исследования преломления рентгеновских лучей используется явление полного внутреннего отражения. В случае границы раздела стекло – воздух явление полного внутреннего отражения рентгеновского излучения с можно наблюдать, если угол скольжения меньше . В качестве отражающего зеркала для рентгеновского излучения используются совершенные кристаллы с межатомным расстоянием порядка длины волны излучения.

Рассмотрим простейший случай, когда рентгеновское излучения в виде плоской монохроматической волны падает под углом скольжения на систему плоскопараллельных атомных слоёв, расположенных на расстоянии друг от друга (рис. 2.2).

Рис. 2.2 Использование атомных слоев кристаллической решетки в качестве дифракционной решетки.

Если длина волны падающего излучения , условие усиливающей интерференции двух лучей 1 и 2, отраженных от соседних слоёв запишется в виде

(2.4)

Уравнение (9.4), определяющее направления, в которых наблюдаются максимумы интенсивности отраженного излучения, называется условием Брэгга-Вульфа. Очевидно, что для наблюдения этих максимумов необходимая длина волны . В случае сплошного спектра тормозного излучения электронов при заданном угле скольжения кристалл «автоматически выбирает» нужную длину волны в соответствии с величиной .

Для наблюдения обычно используется первый порядок дифракции . Если падающее рентгеновское излучение имеет дискретный спектр, то, поворачивая кристалл и измеряя углы , для которых наблюдается максимум интенсивности отраженного излучения, при известной величине можно определить спектр

(2.5)

падающего излучения.

Для одного и того же кристалла возможно задание системы плоскопараллельных атомных плоскостей различными способами. В общем случае атомная плоскость кристалла определяется тремя миллеровскими индексами (), являющимися целыми положительными числами, не имеющими общих делителей. Тогда в условие Брэгга-Вульфа войдёт межплоскостное расстояние , зависящее от типа кристаллической решётки. Для кубической кристаллической решётки с длиной ребра

. (2.6)

<== предыдущая статья | следующая статья ==>





 

Читайте также:

Устройство и принцип работы атомного силового микроскопа

Физические основы колебательной спектроскопии

Физические основы нанотехнологий, получение наноматериалов

Квантовый осциллятор на базе электромеханического резонатора

Ядерный магнитный резонанс

Эффект Зеемана

Понятия низкотемпературоной и высокотемпературной сверхпроводимости

Электронный парамагнитный резонанс

Эффект Мёссбауэра

Устройство сканирующего СКВИД-микроскопа

Сенсоры с использованием химических и биологических процессов на поверхности кантилевера

MEMS-дисплеи.

Метод ЯГР - спектроскопии

Общая физиология сенсорных систем

Датчики и микроактюаторы на основе MEMS-технологий

Вернуться в оглавление: Современные фундаментальные и прикладные исследования в приборостроении

Просмотров: 1048

 
 

© studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам. Ваш ip: 54.204.211.128