Показатели прочности и пластичности материала

Прочность - это способность материала сопротивляться пластической деформации.

Показатели прочности:

1. Предел пропорциональности - это напряжение, ниже которого соблюдается прямая пропорциональная зависимость между напряжением и относительной деформацией:

,

где Рпц - нагрузка при пределе пропорциональности.

2. Предел упругости s0,05 - это условное напряжение, при котором остаточная деформация составляет 0,05% расчетной длины. Ввиду малости величины остаточной деформации на пределе упругости его иногда принимают равным пределу пропорциональности.

3. Предел текучести физический - это наименьшее напряжение при котором образец деформируется без увеличения растягивающей нагрузки:

,

Если на кривой деформации отсутствует четко выраженная площадка текучести (рис. 7, а), то определяют предел текучести условный.

4. Условный предел текучести s0,2 - это напряжение, при котором остаточное удлинение достигает 0,2% длины участка образца на его рабочей части, удлинение которого принимается в расчет при определении указанной характеристики:

,

5. Сопротивление значительным пластическим деформациям (для пластичных материалов) характеризуется пределом прочности.

Предел прочности (временное сопротивление) sВ - это условное напряжение, соответствующее наибольшей нагрузке РМАХ, предшествовавшей разрыву образца:

.

Пластичность - это способность материала проявлять, не разрушаясь, остаточную деформацию.

Показатели пластичности:

1. Относительное удлинение после разрыва d - это отношение приращения расчетной длины образца (lKl0) после разрушения (рис. 8) к начальной расчетной длине l0, выраженное в процентах:

Для определения длины расчетной части lK после разрыва части образца плотно прикладывают друг к другу (рис. 8) и измеряют расстояние между метками, которые ограничивали начальную расчета длину.


Относительное сужение y - это отношение абсолютного уменьшения площади поперечного сечения в шейке образца (F0FK) к начальной площади сечения F0 выраженное в процентах:

где F0 и FK - площади поперечного сечения образца до и после испытания соответственно.

Способы определения твердости материалов.

Твердость — способность материала сопротивляться упругой и пластической деформации при внедрении в него более твердого тела (индентора).

Определение твердости по методу Роквелла

При измерении твердости по Роквеллу индентор - алмазный конус с углом при вершине 120° (ГОСТ 9013-59) и радиусом закругления 0,2 мм или стальной шарик диаметром 1,5875 мм (1/16 дюйма) - вдавливается в образец под действием двух последовательно прилагаемых нагрузок: предварительной Р0 и общей Р = Р+ Р1, где Р1 - основная нагрузка.

Схема измерения твердости по Роквеллу

Сначала индентор вдавливается в поверхность образца под предварительной нагрузкой Р = 100 Н, которая не снимается до конца испытания, что позволяет повысить точность испытаний, т.к. исключает влияние вибраций и тонкого поверхностного слоя. Под нагрузкой Р0 индентор погружается в образец на глубину h0. Затем на образец подается полная нагрузка Р = Р+ Р1, глубина вдавливания увеличивается. Последняя после снятия основной нагрузки Р1 (на индентор вновь действует только предварительная нагрузка Р0) определяет число твердости по Роквеллу (HR). Чем больше глубина вдавливания h, тем меньше число твердости HR.

Твердомер Роквелла автоматически показывает значения числа твердости в условных единицах по одной из трех шкал - А, В и С и соответственно они обозначаются как HRA, HRB и HRC. Выбор шкалы производится по предварительно известной твердости материала по Бринеллю из табл.3. Если сведений о твердости материала образца нет, то после ориентировочных замеров необходимо обратиться к табл.5 и затем произвести окончательные замеры твердости.

Таблица 3

Примерная твердость по Бринеллю Шкала Роквелла Тип индентора Общая нагрузка Допускаемые величины твердости по шкале
Н кгс
Менее 228 Шкала В (красная) стальной шарик     25-100
229-682 Шкала С (черная) алмазный конус     22-68
363-720 Шкала А (черная) алмазный конус     70-85

Существенное значение имеет толщина испытуемого образца. После замера твердости на обратной стороне образца не должно быть следов отпечатка.

Во всех случаях измерений значение предварительной нагрузки постоянно и равно Р = 100 Н.

Число твердости выражается формулами:

, (3)

, (4)

где (0,002 - цена деления шкалы индикатора твердомера Роквелла).

Таким образом, единица твердости по Роквеллу безразмерная величина, соответствующая осевому перемещению индентора на 0,002 мм.

Существует несколько типов приборов для измерения твердости по Роквеллу, но принципиальные схемы их работы аналогичны.

Определение твердости по методу Виккерса

При стандартном измерении твердости по Виккерсу (ГОСТ 2999-75) в поверхность образца вдавливается алмазный индентор в форме четырехгранной пирамиды с углом при вершине a»136°. После удаления нагрузки P (10¸1000 Н), действовавшей определенное время (10-15 с), измеряют диагональ отпечатка d, оставшегося на поверхности образца.

Число твердости HV определяют по формуле:

(5)

где Р - нагрузка в кгс, d - длина диагонали отпечатка в мм.

Число твердости записывается без единиц измерения, например 230 HV. Если число твердости выражают в МПа, то после него указывают единицу измерения, например HV = 3200 МПа.

Относительно небольшие нагрузки и малая глубина вдавливания индентора обуславливают необходимость более тщательной подготовки поверхности, чем при измерении твердости по Бринеллю. Образцы, как правило, полируют, с поверхности снимается наклеп.

Измерения осуществляют на приборах марки ТП. Прибор смонтирован на станине 1. Образец помещают на опорный столик 5. Нагрузка прилагается к индентору 6 через установленный на призмах рычаг. Рычаг с подвеской 14 без сменных грузов 15 обеспечивает минимальную нагрузку 50 Н.

Схема прибора ТП для определения твердости по Виккерсу:

1 - станина; 2 - педаль грузового привода; 3 - маховичок; 4 - винт подъемный; 5 - столик опорный; 6 - индентор; 7 - рукоятка; 8 - шпин-дель; 9 - шпиндель промежуточный; 10 - микроскоп измерительный; 11 - призма; 12 - рычаг; 13 - штырь; 14 - подвеска; 15 - грузы сменные; 16 - шпиндель пустотелый; 17 - ры-чаг ломанный; 18 - винт регулиро-вочный; 19 - амортизатор масляный; 20 - груз; 21 и 22 - рычаги; 23 - руко-ятка.

После установки образца на столик 5 совмещают перекрестие окуляра микроскопа 10 с тем местом на образце, твердость которого необходимо измерить. Наводят на резкость, устанавливают индентор над образцом, включают механизм грузового привода. Пока образец находится под нагрузкой, горит сигнальная лампочка, расположенная в верхней части передней панели твердомера.

После снятия нагрузки поворотную головку переводят в такое положение, чтобы полученный отпечаток вновь был виден в микроскоп. Затем с помощью барабанчика окуляр-микрометра замеряют длину диагонали отпечатка.

Физический смысл числа твердости по Виккерсу аналогичен НВ, величина HV тоже является усредненным условным напряжением в зоне контакта индентор - образец и характеризует обычно сопротивление материала значительной пластической деформации.

Числа HV и НВ близки по абсолютной величине только до 400-450 НV. Выше этих значений метод Бринелля дает искаженные результаты из-за остаточной деформации стального шарика. Алмазная же пирамида в методе Виккерса позволяет определять твердость практически любых металлических материалов. Еще более важное достоинство этого метода - геометрическое подобие отпечатков при любых нагрузках, поэтому возможно строгое количественное сопоставление чисел твердости НV любых материалов, испытанных при различных нагрузках.

Хрупкое и вязкое разрушение материала.

При хрупком разрушении макропластическая деформация отсутствует. В металле возникает только упругая деформация. Разрушение происходит путем отрыва или скола, когда плоскость разрушения перпендикулярна действующим напряжениям. Разрушение начинается от дефекта (микротрещины), вблизи которого концентрируются напряжения, превосходящие теоретическую прочность металла.

При вязком разрушении металл претерпевает значительную пластическую деформацию. У пластичных материалов, благодаря релаксации напряжений, их концентрация вблизи несплошностей оказывается недостаточной и развитие трещин скола (т.е. хрупких) не происходит. Вязкое разрушение происходит путем сдвига.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: