Теоретическое введение. Различают собственную и примесную проводимость полупроводников

Различают собственную и примесную проводимость полупроводников. При собственной проводимости плотность тока определяется выражением

, (1)

где - концентрация электронов и дырок в собственном полупроводнике, <ve> и <vp > - их средние скорости упорядоченного движения.

Используя закон Ома в дифференциальной форме

, (2)

получим формулу удельной электропроводности собственного полупроводника

(3)

В полученном выражении и представляют собой среднюю скорость упорядоченного движения электронов и дырок при единичной напряженности электрического поля и называются подвижностью носителей.

Удельная электропроводность примесных полупроводников, обусловленная как собственными, так и примесными носителями (например, электронами), определяется выражением

(4)

Из уравнений (3) и (4) следует, что температурная зависимость электропроводности полупроводников определяется зависимостью от температуры концентрации собственных и примесных носителей и их подвижностью.

Подвижность свободных носителей в кристалле определяется их рассеянием на неоднородностях кристаллической решетки. При низких температурах преобладает рассеяние на ионизированных примесных атомах. Рассеяние состоит в том, что ионы примеси отклоняют электроны, проходящие вблизи них, и тем самым уменьшают скорость их упорядоченного движения. Согласно расчетам при низких температурах

~ T3/2 .

При высоких температурах основное значение имеет рассеяние электронов и дырок на тепловых колебаниях решетки, зависимость подвижности от температуры имеет вид

~ T-3/2. График зависимости показан на рис.1.

В собственных и слабо легированных полупроводниках электронный и дырочный газ является невырожденным и его концентрация весьма резко зависит от температуры. Согласно расчетам температурная зависимость концентрации носителей заряда для собственных и примесных полупроводников выражается формулами

Рис. 1.

, (5)

, (6)

где С1 и С2 – константы слабо зависящие от температуры, Еg – энергия активации собственных носителей, ЕD – энергия активации донорной, либо акцепторной примеси. Таким образом, концентрация собственных и примесных носителей растет с повышением температуры по экспоненциальному закону. Если по оси абсцисс отложить 1/Т, а по оси ординат ln n, то эта зависимость будет иметь вид ломаной линии (рис.2).

Рис.2. Рис.3

Область АВ соответствует низким температурам. При этих температурах происходит постепенное возбуждение примесных носителей: электронов в полупроводниках с донорной примесью и дырок в полупроводниках с акцепторной примесью. При достижении температуры Тs все примесные атомы ионизируются и наступает истощение примесных носителей. Их концентрация становится равной концентрации примесей и, следовательно, не зависит от температуры (участок ВС). Температура истощения примеси тем выше, чем больше энергия активации примеси и ее концентрация. При дальнейшем повышении температуры начинается интенсивное возбуждение собственных носителей (участок СД). Температура перехода к собственной проводимости Тi тем выше, чем больше ширина запрещенной зоны Еg.

Проанализируем теперь температурную зависимость электропроводности полупроводников, исходя из зависимости от температуры концентрации носителей и их подвижности. Схематически кривая зависимости от 1/Т представлена на рис.3.

Низкотемпературная область АВ отвечает примесной проводимости полупроводника, возникающей вследствие ионизации примесных атомов и появления примесных носителей. Подвижность носителей при этих температурах определяется рассеянием на ионизированных атомах примеси. В первом приближении этой зависимостью по сравнению с экспоненциальной можно пренебречь, считая что

, (7)

где

Логарифмируя (7), получим уравнение, описывающее прямую АВ

. (8)

Тангенс угла наклона прямой АВ к оси абсцисс равен

. (9)

Таким образом, по графику зависимости можно определить энергию активации примесных носителей ЕD или ЕА.

Область ВС простирается от температуры истощения примесных носителей TS до температуры перехода к собственной проводимости Тi. В этой области все примесные атомы ионизированы, но еще не происходит заметного возбуждения собственных носителей, вследствие чего концентрация носителей сохраняется постоянной. Поэтому, температурная зависимость проводимости полупроводника в этой области определяется температурной зависимостью подвижности носителей. Если основным механизмом рассеяния носителей в рассматриваемой области является рассеяние на тепловых колебаниях решетки, для которого характерно уменьшение подвижности с ростом температуры, то проводимость на этом участке будет падать (рис.3). Если же основным механизмом окажется рассеяние на ионизированных примесях, то подвижность, а следовательно, и проводимость в области ВС будет увеличиваться с ростом температуры.

Область СD соответствует переходу к собственной проводимости. В этом случае зависимостью подвижности от температуры по сравнению с экспоненциальной зависимостью концентрации можно пренебречь, представив выражение (3) в виде

, (10)

где .

Графиком этой зависимости является прямая, образующая угол с осью абсцисс, тангенс которого пропорционален ширине запрещенной зоны

. (11)

Резкая зависимость сопротивления полупроводников от температуры используется для устройства термосопротивлений.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: