Модельное представление о проводимости полупроводника

Определение ширины запрещенной зоны полупроводника оптическим методом

Цель работы

Целью данной работы является изучение процесса по-глощения света веществом полупроводника для определе-ния важнейшей характеристики полупроводника – ширины запрещенной зоны.

Основные положения теории

Модельное представление о проводимости полупроводника

Важнейшей характеристикой полупроводника, определя-ющей его электрические, оптические и другие свойства, является ширина запрещенной зоны. Для уяснения физи-ческого смысла этой характеристики рассмотрим основные модельные представления об электропроводности полупро-водников на примере ковалентных полупроводников 4-й группы (германий Ge, кремний Si).

Между двумя атомами полупроводника имеет место ко-валентная связь, осуществляемая парой электронов, принадлежащих обоим этим атомам. Если все ковалентные связи заполнены, то свободных электронов в кристалле нет и, следовательно, электропроводность такого кристалла бу-дет равна нулю. Рис. 1 даёт двумерное представление о решетке ковалентного полупроводника (Si). При T=0 ° К свободных электронов в решетке нет, так как все валентные электроны участвуют в связях. Флуктуации теплового движения атомов при повышении температуры могут привести к разрыву ковалентных связей в некоторых местах кристалла и освобождению электронов, которые теперь могут участвовать в проводимости. Следовательно, чтобы валентный электрон стал электроном проводимости, ему надо сообщить некоторую энергию активации (), равную энергии разрыва ковалентной связи.

 
 

После ухода электрона со связи последняя остаётся незаполненной (изображена пунктиром на рис. 1). В эту незаполненную связь могут перемещаться связанные элек-троны с соседних связей. Движение связанных электронов по вакантным незаполненным связям в некотором направ-лении эквивалентна движению положительно заряженных незаполненных связей в противоположном направлении. Таким образом, при разрыве ковалентных связей в полу-проводнике возникают два механизма электропроводности: проводимость свободных электронов, движущихся против электрического поля, и проводимость валентных электро-нов по незаполненным связям, которую можно эквивален-тно описать, как движение в направлении электрического поля положительно заряженных незаполненных связей, на-зываемых дырками. Полная электропроводность должна состоять из электронной и дырочной составляющих.

Полупроводники, в которых электропроводность возни-кает за счет разрыва собственных ковалентных связей в ре-шетке, называются собственными. В собственных полупро-водниках концентрация свободных электронов равна кон-центрации дырок.

Концентрация носителей заряда в собственных полу-проводниках растет с повышением температуры. Причем, чем меньше в полупроводнике энергия активации , тем больше будет концентрация носителей зарядов при данной температуре. Создание собственной проводимости можно про-иллюстрировать с помощью энергетической диаграммы (рис. 2). Энергетические состояния валентных (связанных) электро-нов образуют зону, называемую валентной зоной. На диа-грамме уровнем обозначена верхняя граница этой зоны. Чтобы электрон стал свободным, ему нужно сообщить энер-гию .

 
 

Совокупность уровней энергии свободных электронов проводимости образуют зону энергий, называемую зоной проводимости. Интервал энергии, определяемый соотно-шением:

, (1)

называется запрещенной зоной, причем обозначает нижнюю границу зоны проводимости. Соотношение (1) показывает, что ширина запрещенной зоны опре-деляется просто энергией разрыва ковалентных связей.

Отметим, что существование энергетических зон, кото-рые введены выше в связи с энергией разрыва ковалентной связи, можно строго обосновать теоретически только при решении квантовомеханичекой задачи о движении электро-на в периодическом поле кристалла. Решение этой задачи показывает, что при образовании твердого тела соседние атомы настолько сближаются друг с другом, что внешние электронные оболочки не только соприкасаются, но даже перекрываются. В результате этого характер движения электронов резко изменяется: электроны, находящиеся на определенном энергетическом уровне одного атома, полу-чают возможность переходить без затраты энергии на со-ответствующий уровень соседнего атома, и таким образом свободно перемещаться вдоль всего твердого тела.

Вместо индивидуальных атомных орбит образуются кол-лективные, и подоболочки отдельных атомов объединяются в единый для всего кристалла коллектив – зону. Расчет показывает, что энергетическая зона состоит из множества энергетических уровней, отстоящих друг от друга на рас-стояние порядка 10-23 эВ. Заполнение энергетических зон электронами происходит в соответствии с принципом Паули: на каждом уровне в зоне может находиться не более двух электронов.

 
 

На рис. 3 показано заполнение энергетических зон электронами при температуре Т=0 К.

В этом случае все состояния в валентной зоне за-полнены. Это означает, что все валентные электроны при-нимают участие в ковалентной связи и свободных элек-тронов нет – проводимость отсутствует. По мере повыше-ния температуры часть электронов термически возбуж-дается и переходит в зону проводимости, при этом в вален-тной зоне образуются свободные состояния – дырки.

Проведённое качественное обсуждение проводимости собственных полупроводников показывает, что она опреде-ляется прежде всего шириной запрещенной зоны . По-этому задача экспериментального определения ширины за-прещенной зоны является важнейшей.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: