Элементарных частиц

Все свойства частицы определяются ее способностью (или неспособностью) участвовать в сильном взаимодействии. Частицы, участвующие в сильном взаимодействии, образуют особый класс и называются адронами. Частицы, участвующие преимущественно в слабом взаимодействии и не участвующие в сильном, называются пептонами. Кроме того, существуют частицы — переносчики взаимодействий.

Лептоны (12). Ведут себя как точечные объекты, не обнаруживая внутренней структуры даже при сверхвысоких энергиях. Они являются элементарными объектами, т.е. они не состоят из каких-то других частиц. Могут иметь электрический заряд, а могут и не иметь, спин у всех у них равен 1/2.

Среди лептонов наиболее известен электрон. Электрон — это первая из открытых элементарных частиц. Электрон - носитель наименьшей массы и наименьшего электрического заряда (не считая кварков) в природе.

Другой хорошо известный лептон – нейтрино, являются наиболее распространенными частицами во Вселенной, но изучать их очень сложно. Нейтрино почти неуловимы; обладают огромной проникающей способностью (особенно при низких энергиях); не участвуют ни в сильном, ни в электромагнитном взаимодействиях; проникают через вещество.

Вопрос о массе еще не решен.

Широко распространены в природе мюоны, на долю которых приходится значительная часть космического излучения. Мюон — одна из первых известных нестабильных субатомных частиц, открытая в 1936 г. Напоминает электрон: имеет тот же заряд и спин, участвует в тех же взаимодействиях, но имеет большую массу и нестабилен. Примерно за две миллионные доли секунды мюон распадается на электрон и два нейтрино. Проникая в вещество, мюоны взаимодействуют с ядрами и электронами атомов и образуют необычные соединения. Положительный мюон, присоединяя к себе электрон, образует систему, аналогичную атому водорода - мюоний, химические свойства которого во многом подобны свойствам водорода. А отрицательный мюон может замещать на электронной оболочке один из электронов, образуя так называемый мезоатом. В мезоатоме мюоны расположены в сотни раз ближе к ядру, чем электроны. Это позволяет использовать мезоатом для изучения формы и размеров ядра.

В конце 1970-х гг. был обнаружен τ-лептон - очень тяжелая частица. Ее масса около 3500 масс электрона, но во всем остальном он ведет себя подобно электрону и мюону.

Адроны (сотни). Большинство из них - резонансы, т.е. крайне нестабильные частицы, построены из более мелких частиц.

Все адроны встречаются в двух разновидностях — электрически заряженные и нейтральные. Известны и широко распространены нейтрон и протон. Остальные адроны быстро распадаются.

Адроны подразделяются на два класса. Это — класс барионов (тяжелые частицы) (протон, нейтрон, гипероны и барионные резонансы) и семейство более легких мезонов (мюоны, бозонные резонансы и др.).

На сегодняшний день кварки и антикварки считаются неделимыми, их по 6 типов, которые называются «ароматами» (flowers): u (up), d (down), с (charm), s (strangeness), t (top) и b (bottom). Самое необычное свойство кварков заключается в том, что они существуют только внутри адронов и не наблюдаются как самостоятельно существующие частицы.

Частицы - переносчики взаимодействий. Они не являются строительным материалом материи, а непосредственно обеспечивают фундаментальные взаимодействия, т.е. не позволяют материи распадаться на части.

Переносчиком электромагнитного взаимодействия выступает фотон.

Глюоны (их всего восемь) - переносчики сильного взаимодействия между кварками, которые, благодаря глюонам, связываются парами или тройками

Переносчиками слабого взаимодействия являются три частицы— W+-, W--, Z0- бозоны (открыты в 1983 г). Радиус слабого взаимодействия чрезвычайно мал, поэтому его переносчиками должны быть частицы с большими массами покоя. В соответствии с принципом неопределенности время жизни частиц с такой большой массой покоя должно быть чрезвычайно коротким — всего лишь около 1026 с.

Возможно существование и переносчика гравитационного поля — гравитона. Они движутся со скоростью света; т.е. это частицы с нулевой массой покоя. Но в то время как фотон имеет спин 1, спин гравитона равен 2.

При электромагнитном взаимодействии одноименно заряженные частицы (электроны) отталкиваются, а при гравитационном — все частицы притягиваются друг к другу.

Каждая группа этих переносчиков взаимодействий характеризуется своими специфическими законами сохранения. А каждый закон сохранения может быть представлен как проявление определенной внутренней симметрии уравнений поля (движения). Это обстоятельство используется для построения единой теории фундаментальных взаимодействий.

Каждый вид частиц играет свою роль в формировании структуры материи, Вселенной.

Тема 6. Космологические модели Вселенной (12 часов)

ЦЕЛЬ: знакомство с первыми астрономическими представлениями, формирование целостной астрономической картины мира

ЗАДАЧИ:

  • формирование знаний о развитии представлений о Космосе;
  • освоение знаний о структуре Вселенной;
  • формирование знаний о происхождении Вселенной;
  • освоение знаний о моделях строения Вселенной:
  • освоение знаний о звездах: их происхождении и эволюции;
  • освоение знаний о структуре Солнечной системы;
  • формирование знаний о происхождении солнечной системы;
  • раскрыть методы научного познания природы и формирование на этой основе представлений об астрономической картине мира

ПЛАН ЛЕКЦИИ:

1. Развитие представлений о Космосе.

2. Структура и модели Вселенной

3. Эволюция Вселенной.

4. Звезды – строение и эволюция

5. Солнечная система – структура

6. Солнечная система – генезис

1. Развитие представлений о Космосе.

С ранних времен человек задумывался об устройстве окружающего его мира как единого целого. И в каждой культуре оно понималось и представлялось по-разному. Развитие этих представлений в разных частях света шло по-разному. Но если в Старом Свете накопленные знания и представления в целом никуда не исчезли, лишь передаваясь от одной цивилизации к другой, то о Новом Свете такого сказать нельзя. Виной тому — колонизация Америки европейцами, уничтожавшая многие памятники древних культур.

В период Средневековья представление о мире как о едином целом не претерпевает существенных изменений. И тому две причины. Первая — сильное давление ортодоксальных богословов, характерное как для католической Европы, так и для исламского мира. Вторая — наследие прошлого, когда представления о мире строились из неких философских концепций. Необходимо было осознать, что астрономия являлась частью физики.

Первый значительный толчок в сторону современных представлений о Вселенной совершил Коперник. Второй по величине вклад внесли Кеплер и Ньютон. Но поистине революционные изменения в наших представлениях о Вселенной происходят лишь в XX веке. Даже в начале его некоторые учёные считали, что Млечный Путь — вся Вселенная.

Древняя Греция, как и многие другие древние цивилизации, создала своё представление о Вселенной. Но уникальность древней Греции состояла в том, что она имела не одну модель: различные философские школы выдвинули крайне различные модели мира, и каждая была тем или иным образом «аргументирована».

Пифагорейцы предложили пироцентрическую модель Вселенной, в которой звёзды, Солнце, Луна и шесть планет обращаются вокруг Центрального Огня (Гестии). Чтобы в сумме получилось священное число — десять — сфер, шестой планетой объявили Противоземлю (Антихтон). Как Солнце, так и Луна светили отражённым светом Гестии.

Платон предложил разложить неравномерные движения светил на «совершенные» движения по окружностям. На этот призыв откликнулся Евдокс Книдский. В своих (несохранившихся) сочинениях он изложил теорию гомоцентрических сфер — кинематическую схему движения планет, объясняющую попятное движение планет (с несколькими наложенными круговыми движениями) всего по четырём сферам, в центре которых находилась Земля.

Гераклид Понтийский предполагал вращение Земли вокруг оси. Кроме того он считал Венеру и Меркурий обращающимися вокруг Солнца, которое, в свою очередь, обращается вокруг Земли. Существует и другая реконструкция система мира Гераклида: и Солнце, и Венера, и Земля вращаются по окружностям вокруг единого центра, причём период одного оборота Земли равен году.

Космологическую систему, имевшую большое значение в Средневековье, создал Аристотель. Он полагал, что небесные тела переносятся в своём движении твёрдыми небесными сферами, к которым они прикреплены. По его мнению, всё, что движется, приводится в движение чем-нибудь внешним, которое, в свою очередь, также чем-то движется, и так далее, пока мы не дойдем до двигателя, который сам по себе неподвижен — до Перводвигателя. Землю он считал неподвижной.

Аристотель превратил сведения о видимых небесных явлениях и движениях светил в стройную теорию – систему мира.

Принципы, лежащие в основе геоцентрической системы мира:

1. Небесный свод (сфера неподвижных звезд) – опора для звезд и граница между небом и землей. Он за сутки делает полный оборот вокруг оси, соединяющей северный полюс неба с южным. Ось вращения пересекается с небесной сферой в двух неподвижных точках – полюсах мира. Принцип сохранился до Коперника.

2. Одухотворенность небесных тел: звезды, как и другие небесные тела, обладают душой, приводящей их в движение.

3. Принцип небесного совершенства:

Небесное совершенство обусловлено несколькими обстоятельствами.

Небеса идеальны во всех отношениях. Они сами и их опоры состоят из вечной материи – эфира. Эфир, согласно Аристотелю, - самый легкий элемент, который, лежит на границе между материальным и нематериальным. Эфир не может превращаться в другие элементы, следовательно, он не может ни возникать, ни уничтожаться. Потому для небесных тел и возможно движение, которое недоступно ничему земному. Поэтому и небо не могло возникнуть, и, следовательно, мир существует вечно.

Все небесные тела и Земля шарообразны. Шар и сфера, идеальные геометрические фигуры. Шар при вращении вокруг собственной оси всегда занимает одну и ту же часть пространства. Сфера – геометрическое тело, все точки поверхности которой равноудалены от центра. В небесах реализуется только совершенное движение: совершенное движение – это вечное, равномерное круговое движение.

Вокруг Земли обращаются прозрачные твердые сферы с прикрепленными к ним небесными телами (планеты) в следующей последовательности: Луна, Солнце, Венера, Меркурий, Марс, Юпитер, Сатурн.

Первичной причиной движения служит вращение сферы неподвижных звезд. Движение первой сферы передается другим сферам – все ниже и ниже вплоть до Земли. Вся модель содержала в общей сложности 55 сфер, как бы вложенных друг в друга и передающих движение друг другу.

“Подлунный” мир, т. е. область между орбитой Луны и центром Земли, есть область беспорядочных неравномерных движений. Круговое движение ей не свойственно и есть для нее нечто насильственное. Все тела в этой области состоят из четырёх низших элементов: земли, воды, воздуха и огня. Земля как наиболее тяжёлый элемент занимает центральное место, над ней последовательно располагаются оболочки воды, воздуха и огня.

“Надлунный” мир, т. е. область между орбитой Луны и крайней сферой неподвижных звёзд, есть область вечно равномерных движений, а сами звёзды состоят из пятого – совершеннейшего элемента – эфира.

За последней сферой мира пребывает только бог. Никакого другого бытия, запредельного миру, не может быть.

Телам, которым свойственны определенные движения. Это движение по направлению к центру мира, к его периферии и круговое движение. Но все эти виды движения возможны только в сфере. А так как за границами сферы не существует ничего, то за ней не может существовать и пустота. Мир объемлет в себе не только все место, но и все время. Само по себе время – мера движения. Так как движение не распространяется на область, запредельную миру, то не распространяется на нее и время.

Попытка решения трудностей в модели Аристотеля была предпринята выдающимся александрийским ученым Клавдием Птолемеем. Для каждой планеты он разработал свою теорию, состоящую из разнообразных геометрических приемов. Было предположено, что планеты одновременно участвуют в двух независимых, но “совершенных” движениях. Наблюдаемое “несовершенное” движение есть результат сложения совершенных движений. Птолемей перестроил геометрическую модель Вселенной Аристотеля используя комбинацию: деферентов (лат. deferentis – несущий), эксцентров (смещенный центр) и эпициклов (лат. epi kyklos – на круге).

Деферент – главная несущая окружность каждой планеты. По деференту равномерно движется не сама планета, а центр S второй окружности меньшего диаметра – эпицикла. Сама планета равномерно движется по эпициклу. Центры эпициклов нижних планет лежали на прямой, соединяющей Землю и Солнце. Для верхних планет тоже вводилось ограничение: отрезок, соединяющий верхнюю планету с центром ее эпицикла параллелен прямой, соединяющей Землю с Солнцем.

Система Птолемея к началу XVI в. представляла сложную геометрическую конструкцию и насчитывала 112 кругов. Все принципы, лежащие в основе геоцентрической картины мира Аристотеля, были спасены, а сложные движения небесных тел объяснялись наложением нескольких круговых движений. При этом всегда можно отыскать точку (эквант), из которой движение будет казаться равномерным. Модель Птолемея объясняла особенности движения небесных тел.

В Средние века в католической Европе господствовала геоцентрическая система мира по Птолемею. Эта система вкупе с воззрениями Аристотеля получила официальное признание и поддержку со стороны Церкви и Папского престола.

Первая половина XVI века отмечена появлением новой, гелиоцентрической системы мира Николая Коперника. В центр мира Коперник поместил Солнце, вокруг которого вращались планеты (в числе которых и Земля, совершавшая к тому же ещё и вращение вокруг оси). Вселенную Коперник по-прежнему считал ограниченной сферой неподвижных звёзд; по-видимому, сохранялась у него и вера в существование небесных сфер.

Идеи Коперника вызвали живой интерес среди исследователей, породив волну новых идей об устройстве Вселенной.

С этими взглядами не соглашался Кеплер. Вселенную он представлял в виде шара конечного радиуса с полостью посередине, где располагалась Солнечная система. Шаровой слой за пределами этой полости Кеплер считал заполненным звёздами — самосветящимися объектами, но имеющими принципиально другую природу, чем Солнце однако эти «сферы» не являются абсолютно круглыми, их вращение не является равномерным, оси вращения не занимают фиксированного положения в пространстве. Вследствие этого у мира нет абсолютного центра и чёткой границы. Один из его доводов является непосредственным предшественником фотометрического парадокса.

С именем Кеплера связана ещё одна революция. Он заменяет круговые движения, отягчённые многочисленными эквантами, на одно — по эллипсу и выводит законы движения по нему, ныне носящие его имя.

Однако не все учёные приняли концепцию Коперника - Тихо Браге предложил свою компромиссную геогелиоцентрическую: Солнце, Луна и звёзды вращаются вокруг неподвижной Земли, а все планеты и кометы — вокруг Солнца. Суточного вращения Земли Браге тоже не признавал. Прямое доказательство движения Земли вокруг Солнца появилось только в 1727 году (аберрация света), но фактически система Браге была отвергнута большинством учёных ещё в XVII веке как неоправданно и искусственно усложнённая по сравнению с системой Коперника-Кеплера.

На пороге XVIII века выходит в свет книга, имеющая колоссальное значение для всей современной физики — «Математические начала натуральной философии» Ньютона. Ещё только создаваемый математический анализ даёт возможность физике строго оценивать факты, а также достоверно судить о качестве пытающихся описать их теорий.

На этой основе уже в XVIII в. Ньютон строит свою модель Вселенной.

Распространив закон тяготения на всю Вселенную, Ньютон рассмотрел главную космологическую проблему: конечна или бесконечна Вселенная. Он пришел к выводу, что лишь бесконечности и статичности Вселенной материя может существовать в виде множества космических объектов – центров гравитации. В конечной Вселенной материальные тела рано или поздно слились бы в единое тело в центре мира.

Ньютон задумывался и над проблемой происхождения упорядоченной Вселенной. Он осознал, что одних лишь механических свойств материи недостаточно. Полагал, что из одних неупорядоченных механических движений частиц не могла возникнуть вся сложная организация мира. Ньютон считал, что материя сама по себе косна, пассивна и не способна к движению, поэтому тайной оставалось начало орбитального движения планет. Для раскрытия этой тайны оставалось прибегнуть к некой более могучей, чем тяготение, силе - к Богу, и Ньютон допустил, что был божественный «первый толчок», благодаря которому планеты приобрели орбитальное движение, а не упали на Солнце.

XX век — век рождения современной космологии. Она возникает в начале века и по мере развития вбирает в себя все новейшие достижения, такие как технологии постройки больших телескопов, космические полёты и компьютеры.

В 1916 А. Эйнштейн пишет уравнения общей теории относительности — теории гравитации, ставшей основой для доминирующих космологических теорий. В 1917 году, пытаясь получить решение, описывающее «стационарную» Вселенную, Эйнштейн вводит в уравнения общей теории относительности дополнительный параметр — космологическую постоянную.

В 1922—1924 гг. А. Фридман применяет уравнения Эйнштейна (без космологической постоянной и с ней) ко всей Вселенной и получает нестационарные решения.

Фридман первым отказался от постулата о стационарности Вселенной, заменив его на утверждения об однородности и изотропности (от греч. "изос" - "равный", "тропос" - "характер") Вселенной (о том, что во Вселенной нет ни выделенных областей, ни преимущественных направлений).

В результате Фридман нашёл новые, уже вполне определённые решения уравнений ОТО - в виде трёх возможных моделей нестационарной Вселенной. Каждая определялась принимаемым интервалом значений Л и знаком кривизны пространства.

Две модели с положительным Л описывали Вселенную с монотонно растущим радиусом кривизны. Вселенная оказывалась расширяющейся: в одном случае из точки, в другом - начиная с некоторого начального ненулевого объёма. Время расширения её до современного состояния

Фридман условно назвал "временем, прошедшим от сотворения мира", отметив, что "это время может быть бесконечным".

Третья модель представляла "периодическую" Вселенную: радиус кривизны её пространства возрастал от нуля до некоторой величины за время, которое Фридман назвал "периодом мира", а затем опять уменьшался до нуля, Вселенная вновь сжималась в "точку" и т. д. Этот вариант очень напоминал идеи древнеиндийских философов. Эйнштейновская модель стационарной Вселенной, как показал Фридман, представляла собой лишь частный случай решения мировых уравнений ОТО.

Таким образом, Фридман отвергал общий вывод Эйнштейна о том, что ОТО обязательно приводит к конечности Вселенной.

2. Структура и модели Вселенной

Галактики - это гигантские звездные системы (примерно до 1013звезд). Такого же порядка и массы галактик по отношению к массе Солнца.

Некоторые галактики можно разглядеть в хороший бинокль.

Строение их различно. Но наиболее характерна одна форма — уплощенный диск с выпуклостью в центре, откуда исходят спиральные рукава. (Галактика Андромеды, как и наша собственная, принадлежит к спиральному типу галактик)

Солнечная система расположена в одном из спиральных рукавов Галактики на расстоянии двух третей ее радиуса от центра.

Свет от галактик приходит к нам через пространство в миллиарды и миллиарды километров, на преодоление которого он затрачивает миллионы лет. Свет от ближайшей к нам галактики Андромеды достигает Земли через 1,5 млн. лет. Расстояние до самых дальних, из наблюдаемых в настоящее время галактик — свыше 10 млрд. световых лет.

Одна из центральных проблем внегалактической астрономии связана с определением расстояний до галактик и размеров самих галактик. Расстояния до ближайших галактик, которые можно разложить на звезды, определяются по их светимости. Сложнее оценить расстояние до далеких галактик.

В 1912 г. американский астроном В. Слайфер обнаружил эффект красного смещения в спектрах далеких галактик: их спектральные линии оказались смещенными к длинноволновому (красному) краю по сравнению с такими же линиями в спектрах источников, неподвижных относительно наблюдателя.

А в 1929 г. американский астроном Э. X а б б л, сравнивая расстояния до галактик и их красные смещения, обнаружил, что последние растут в среднем пропорционально расстояниям (закон Хаббла).

В настоящее время измерены красные смещения тысяч галактик и квазаров.

Чрезвычайно многообразны формы галактик. Типология форм галактик, разработанная еще Э. Хабблом, в основном сохранилась до настоящего времени. Хаббл выделял три основных типа галактик:

эллиптические, имеющие круглую или эллиптическую форму (это наиболее простые галактики, не содержащие горячих звезд, сверхгигантов, пыли и газовых туманностей; в центре их нет ядра;

спиральные, которые Хаббл разбил на два семейства — обычные и пересеченные. У первых ветви выходят непосредственно из ядра; у вторых ядро пересечено широкой, яркой полосой, называемой перемычкой или баром; спиральные ветви отходят от концов бара;

неправильные галактики имеют клочковатое строение и неправильную форму; яркость и светимость их невелики; они изобилуют горячими сверхгигантами, газовыми туманностями и пылью (например, Большое и Малое Магеллановы Облака); к неправильным галактикам относятся также взаимодействующие галактики; большинство неправильных галактик - карлики.

Форма и структура галактик связаны с их основными физическими характеристиками: размером, массой, светимостью.

В центрах галактик сосредоточено огромное количество вещества (до 10% всей ее массы). Здесь происходят выбросы большого количества вещества, что приводит к интенсивному движению от центра туч водорода. В отдельных галактиках ядро может представлять собой черную дыру.

Большая же часть нашей Галактики видна лишь как размытая световая полоса, пересекающая небо. Это так называемый Млечный Путь. Благодаря этому (в отличие от других галактик) нашу Галактику может легко наблюдать на небе каждый (на ночном небе светящаяся полоса Млечного Пути представляет собой огромное количество удаленных звезд нашей Галактики, диск которой мы видим как бы «с ребра»).

Наша Галактика — гигантская звездная система, состоящая приблизительно из 200 млрд. звезд, среди них и наше Солнце. Кроме звезд Галактика содержит много пыли, газа; она пронизана магнитными полями, заполнена космическими лучами. По форме она представляет собой достаточно правильный диск с шарообразным утолщением (балдж) в центре (это напоминает линзу или чечевицу).

Диаметр Галактики около 100 000 световых лет (примерно 30 кпк), толщина ее в 10—15 раз меньше, а масса Галактики 2*1011 масс Солнца. Около 1% этой массы составляет межзвездный водород, преимущественно нейтральный. Возраст Галактики около 15 млрд. лет.

Звездный состав Галактики очень разнообразный. Звезды различаются по физическим, химическим характеристикам, особенностям орбит, возрасту и др. Есть старые звезды и молодые (около 100 тыс. лет), некоторые звезды рождаются в настоящее время. Подавляющее большинство звезд имеет «средний» возраст — несколько миллиардов лет. К ним относится и наше Солнце - рядовая звезда нашей Галактики, — которое расположено ближе к ее краю, примерно в 25 000 световых лет от ядра Галактики.

Солнечная система обращается вокруг центра Галактики со скоростью около 220 км/с. Центр нашей Галактики лежит в направлении на созвездие Стрельца (хотя расположен гораздо дальше). Солнце совершает один оборот вокруг центра Галактики за 250 млн. лет. Этот период может быть назван галактическим годом (история человечества по сравнению с этим периодом — только краткий миг). Вся наша Галактика вращается вокруг центра Местной системы галактик (примерно на 2/3 пути между нашей Галактикой и туманностью Андромеды, на расстоянии 0,46 Мпк от Галактики).

Данные внеоптической астрономии позволяют сделать, что ядром Галактики является черная дыра.

К счастью черная дыра невелика по сравнению с ядрами других галактик и не активна в той мере, в какой бывают активны ядра галактик, грандиозные взрывы которых с энергией примерно 1060 эрг заявляют о себе буквально на всю Вселенную.

Метагалактики. Совокупность галактик всех типов, квазаров, межгалактической среды образует Метагалактику - доступную наблюдениям часть Вселенной.

Одно из важнейших свойств Метагалактики — ее постоянное расширение, о чем свидетельствует «разлет» скоплений галактик. Доказательством того, что скопления галактик удаляются друг от друга, являются «красное смещение» в спектрах галактик и открытие реликтового излучения (фоновое внегалактическое излучение, соответствующее температуре около 2,7 К).

Из явления расширения Метагалактики вытекает следствие, что в прошлом расстояния между галактиками были меньше. А если учесть, что и сами галактики в прошлом были протяженными и разреженными газовыми облаками, то очевидно, что миллиарды лет назад границы этих облаков смыкались и образовывали единое однородное газовое облако, испытывавшее постоянное расширение.

Другое важное свойство Метагалактики — равномерное распределение в ней вещества (основная масса которого сосредоточена в звездах). В современном состоянии Метагалактика — однородна в масштабе порядка 200 Мпк. Маловероятно, что она была такой в прошлом. В самом начале расширения Метагалактики неоднородность материи вполне могла существовать. Поиски следов неоднородности прошлых состояний Метагалактики - одна из важнейших проблем внегалактической астрономии.

Однородность Метагалактики (и Вселенной) состоит в том, что структурные элементы далеких звезд и галактик, физические законы, которым они подчиняются, и физические константы, с большой степенью точности одинаковы повсюду.

Представление об однородности Метагалактики доказывает, что Земля не занимает во Вселенной привилегированного положения.

Всё чаще высказывается мысль о множественности «метагалактик», множественности вселенных, каждая из которых имеет свой собственный набор фундаментальных физических свойств материи, пространства и времени, свой тип нестационарности, организации и др. Эти гипотезы не противоречат современным математическим и физико-теоретическим представлениям.

Одна из теоретических посылок для такого вывода связана с тем, что уравнения ОТО и квантовой физики не дают ответа на вопрос о начальных условиях эволюции нашей Вселенной. Здесь возможны два варианта:

o первичное сингулярное состояние вещества из множества потенциальных физических возможностей реализовалось в одну реальную - нашу Метагалактику;

o во Вселенной осуществляется все многообразие физических условий, явлений и движений, допускаемых основными физическими теориями.

Если допустить вторую возможность, то реально существует множество вселенных (метагалактик), образовавшихся в результате «Большого взрыва», связанных между собой некими материальными «каналами», о которых мы пока можем только догадываться (представления о топосах и др.). Для познания каналов понадобится завершенная теория супергравитации, а может даже и некоторая «новая физика».

3. Эволюция Вселенной

Возраст Вселенной. Одним из наиболее важных и интересных результатов космологических исследований в XX в. является определение возраста Вселенной. Ограниченность эволюции Вселенной во времени приводит к понятию ее возраста. Вселенная расширяется, изменяется, значит, у нее есть своя история, время возникновения и время исчезновения, гибели. Можно сказать, что у нее есть своя биография, имеющая даты рождения и смерти.

Возраст Вселенной легко определяется через знание величины постоянной Хаббла (Н). Современная оценка этой постоянной от 50 до 100 км/ (с-Мпк). Обратная величина t = 1/Н имеет размерность времени и означает приблизительный возраст нашей Вселенной. Он составляет от 10 до 20 млрд. лет. При выборе Н – 75 км/(с-Мпк) возраст Вселенной составляет примерно 13 млрд. лет. Именно эта величина возраста Вселенной в настоящее время принимается как наиболее предпочтительная. Ее нельзя считать окончательной. Многое зависит от закономерностей изменения постоянной Хаббла во времени. Пока твердых данных на этот счет нет. Если окажется, что расширение Вселенной идет с замедлением, то придется уменьшить оценку возраста Вселенной, а если окажется, что во Вселенной действуют космологические силы отталкивания, то возраст Вселенной может оказаться и большим, чем 20 млрд. лет.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: