Исследование конструкции LCD-монитора

Лабораторная работа № 14

Цель работы: изучить конструкцию мониторов, технические характеристики и познакомиться с существующими интерфейсами

1. Конструктивно дисплей состоит из ЖК-матрицы (стеклянной пластины, между слоями которой и располагаются жидкие кристаллы), источников света для подсветки, контактного жгута и обрамления (корпуса), чаще пластикового, с металлической рамкой жёсткости.

2. Монитор LCD 27" DNS J279

диагональ экрана 27"

Максимальное разрешение 1920x1080

Контрастность 1200:1

Время отклика 5 мс

Область обзора по горизонтали 170°

Область обзора по вертикали 160°

Максимальное количество цветов 16.7 млн.

Потребляемая мощность в режиме ожидания 1 Вт

Монитор LCD 21.5" DNS H222

Диагональ экрана 21.5"

Максимальное разрешение 1920x1080

Контрастность 1000:1

Время отклика 5 мс

Область обзора по горизонтали 170°

Область обзора по вертикали 160°

Максимальное количество цветов 16.7 млн.

Потребляемая мощность при работе 20 Вт

3. У первого монитора диагональ больше второго, как и контрастность. Но второй из них потребляет больше мощности при работе, в 20 раз.

Вывод по работе:

LCD дисплей работает на жидких кристаллах, и конструктивно отличается от CRT мониторов.

Контрольные вопросы:

1. Пространство между двумя стеклянными пластинами в LCD мониторе заполнено жидкими кристаллами.

2. Под действием приложенного напряжения происходит фазовый переход.

3. Поворот плоскости поляризации светового луча незаметен для глаза, поэтому возникла необходимость добавить к стеклянным панелям еще два других слоя, представляющих собой поляризационные фильтры. Эти фильтры пропускают только ту компоненту светового пучка, у которой ось поляризации соответствует заданному. Поэтому при прохождении поляризатора пучок света будет ослаблен в зависимости от угла между его плоскостью поляризации и осью поляризатора. При отсутствии напряжения ячейка прозрачна, так как первый поляризатор пропускает только свет с соответствующим вектором поляризации. Благодаря жидким кристаллам вектор поляризации света поворачивается, и к моменту прохождения пучка ко второму поляризатору он уже повернут так, что проходит через второй поляризатор без проблем

4. Тонкоплёночный транзистор (TFT, англ. thin-film transistor) — разновидность полевого транзистора, при которой как металлические контакты, так и полупроводниковый канал проводимости изготавливаются в виде тонких плёнок (от 1/10 до 1/100 микрона).

5. Технологии компенсации времени отклика (RTC - Response Time Compensation Technology, иногда также именуемая "Overdrive"), в общих чертах она заключается в подаче более высокого напряжения в начальной стадии изменения ориентации кристаллов сабпикселя, её применение изначально было характерно для игровых мониторов и в ранних версиях её реализации она могла приводить к специфичным малозаметным артефактам изображения.

6. Контрастность — это отношение разности яркостей отображаемых монитором белого и черного цветов. Например, для дисплея, максимальная и минимальная яркости которого равны 200.5 кд/м2 и 0.5 кд/м2 соответственно, контрастность равна (200.5 - 0.5)/0.5 = 400:1.

7. Цветное изображение получается за счет быстрого чередования освещения матрицы красным, зеленым и синим светом..

8. Работа плазменной панели состоит из трех этапов:

инициализация, в ходе которой происходит упорядочивание положения зарядов среды и её подготовка к следующему этапу (адресации). При этом на электроде адресации напряжение отсутствует, а на электрод сканирования относительно электрода подсветки подается импульс инициализации имеющий ступенчатый вид. На первой ступени этого импульса происходит упорядочивание расположения ионовой газовой среды, на второй ступени разряд в газе, а на третьей — завершение упорядочивания.

адресация, в ходе которой происходит подготовка пикселя к подсвечиванию. На шину адресации подается положительный импульс (+75 В), а на шину сканирования отрицательный (-75 В). На шине подсветки напряжение устанавливается равным +150 В.

подсветка, в ходе которой на шину сканирования подается положительный, а на шину подсветки отрицательный импульс, равный 190 В. Сумма потенциалов ионов на каждой шине и дополнительных импульсов приводит к превышению порогового потенциала и разряду в газовой среде. После разряда происходит повторное распределение ионов у шин сканирования и подсветки. Смена полярности импульсов приводит к повторному разряду в плазме. Таким образом, меняя полярность импульсов обеспечивается многократный разряд ячейки.

Один цикл «инициализация — адресация — подсветка» образует формирование одного подполя изображения. Складывая несколько подполей можно обеспечивать изображение заданной яркости и контраста. В стандартном исполнении каждый кадр плазменной панели формируется сложением восьми подполей.

Таким образом, при подведении к электродам высокочастотного напряжения происходит ионизация газа или образование плазмы. В плазме происходит емкостной высокочастотный разряд, что приводит к ультрафиолетовому излучению, которое вызывает свечение люминофора: красное, зелёное или синее. Это свечение проходя через переднюю стеклянную пластину попадает в глаз зрителя.

9. Плазменная панель представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными пластинами, внутри которых расположены прозрачные электроды, образующие шины сканирования, подсветки и адресации. Разряд в газе протекает между разрядными электродами (сканирования и подсветки) на лицевой стороне экрана и электродом адресации на задней стороне.

10. Картинка на экране FED панели формируется за счет электронных лучей, создаваемых в нанотрубках.

11. Принцип работы LEP (Light Emission Plastics) мониторов основан технологии светоизлучающего пластика. Полимеры светятся под действием электрического напряжения. О том, что полупроводящий пластик под действием электрического тока может испускать фотоны (то есть, светиться), знали давно. Но крайне низкая (0.01%) квантовая эффективность этого процесса (отношение числа испущенных фотонов к числу пропущенных через пластик зарядов) делала практическое применение этого эффекта невозможным. За последние 5 лет был совершен прорыв в этом направлении, и квантовая эффективность двухслойного пластика увеличилась до 5% при излучении желтого света, что сравнимо с эффективностью современных светодиодов. Помимо повышения эффективности удалось расширить и спектр излучения. Теперь пластик может испускать свет в диапазоне от синего до ближнего инфракрасного с эффективностью порядка 1%.

12. Первые версии видеоинтерфейсов, такие как MDA, CGA и EGA, были цифровыми. Но в видеоадаптере VGA с его 18-битным цветом пришлось перейти на аналоговую передачу сигналов (три линии сигналов RGB для электронных пушек, плюс стандартные управляющие сигналы кадровой и строчной развёрток) — подобная система имела большой запас по передаваемой полосе частот, вполне достаточной для всех существующих систем отображения.

И действительно, интерфейс VGA прожил без изменений целых 10 лет, за это время количество пикселей поднялось вчетверо (с 640×480 до 1280×1024). Впрочем, к концу 1990-х плазменные панели, изначально небольшие, но дорогие, увеличились до размеров большого телевизора, да и ЖК-мониторы стали достаточно отработаны в ноутбуках — и те, и другие использовали для управления и вывода информации на экран исключительно цифровые сигналы. Поэтому вполне логичным был возврат к цифровой передаче сигналов изображения, что и произошло в 1999 году, когда вышла спецификация DVI. При этом, конечно же, предполагалось, что кинескопы ещё долго не будут сдавать своих позиций — ранние ЖК страдали плохой цветопередачей и ощутимыми задержками изображения. Поэтому в стандарт должны были войти и линии VGA.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: