Экотоксикометрия - раздел экотоксикологии, в рамках которого рассматриваются методические приемы позволяющие оценить экотоксичнсоть ксенобиотиков

Все виды классических количественных токсикологических исследований в полной мере используются для определения экотоксичности ксенобиотиков.

Острая токсичность экополлютантов определяется экспериментально на нескольких видах, являющихся представителями различных уровней трофической организации в экосистеме (водоросли, растения, беспозвоночные, рыбы, птицы, млекопитающие).

Неоднократно делались попытки ранжировать виды живых существ по их чувствительности к ксенобиотикам. Однако для различных токсикантов соотношение чувствительности к ним живых существ различно. Более того, использование в экотоксикологии «стандартных видов» представителей определенных уровней экологической организации, для определения экотоксичности ксенобиотиков, с научной точки зрения, не корректно, поскольку чувствительность животных даже близких видов, порой отличается очень существенно.

При оценке экотоксичности необходимо учитывать, что хотя практически все вещества могут вызывать острые токсические эффекты, хроническая токсичность выявляется далеко не у каждого соединения. Косвенной величиной, указывающей на степень опасности вещества при его хроническом действии, является соотношение концентраций, вызывающих острые (ЛК50) и хронические (порог токсического действия) эффекты. Если это соотношение менее 10, вещество рассматривается как малоопасное при хроническом воздействии.

При оценке хронической экотоксичности вещества необходимо учитывать следующие обстоятельства:

1. Определение коэффициента опасности является лишь самым первым шагом по определения экотоксического потенциала вещества. В условиях лаборатории пороговые концентрации хронического действия токсикантов определяют, оценивая показатели летальности, роста, репродуктивных способностей группы. Изучение других последствий хронического действия веществ порой может привести к иным числовым характеристикам.

2. Исследования токсичности проводят на животных, пригодных для содержания в условиях лаборатории. Получаемые при этом результаты нельзя рассматривать как абсолютные. Токсиканты могут вызывать хронические эффекты у одних видов, и не вызывать - у других.

3. Взаимодействие токсиканта с биотическими и абиотическими элементами окружающей среды может существенно сказаться на его токсичности в естественных условиях (см. выше). Однако это не подлежит изучению в условиях лаборатории.

Специфическим методом экотоксикометрии является метод оценки экологического риска.

23.

Оценка экологического риска

Важнейшей характеристикой ксенобиотиков с позиции экотоксикологии является их экотоксическая опасность. Опасность - это потенциальная способность вещества в конкретных условиях вызывать повреждение биологических систем при попадании в окружающую среду. Потенциальная опасность вещества, определяется его стойкостью в окружающей среде, способностью к биоаккумуляции, величиной токсичности для представителей различных биологических видов.

Оценка экологического риска - это процесс определения вероятности развития неблагоприятных эффектов со стороны биогеоценозов в результате изменений различных характеристик среды. Важным элементом оценки экологического риска является выявление опасности, связанной с возможным массивным воздействием на среду различных химических веществ и определение вероятности такого воздействия. В системе оценки экологического риска любое воздействие, вызывающее изменения в биологических системах, называется стрессором. В этом смысле любой экотоксикант - несомненно стрессор.

Как правило оценка экологического риска проводится в форме заказного исследования, выполняемого с целью получения информации, носящей перспективный или ретроспективный характер, и необходимой заказчику (законодательные, управленческие структуры и т.д.) для принятия административных решений.

Оценка экологического риска включает этапы:

1. Формулирование проблемы и разработка плана анализа ситуации.

2. Анализ экологической ситуации.

3. Обработка данных, формирование выводов и представление материалов заказчику.

29.

Группа полигалогенированных полициклических углеводородов включает галогенпроизводные некоторых ароматических углеводородов, например, диоксина, дибензофурана, бифенила, бензола и др.

Галогенированные токсиканты, содержащие один атом кислорода в молекуле, называют дибензофуранами, два атома - диоксинами, если вещества не содержит кислорода - это бифенилы. Атомы галогенов (хлора или брома) замещают один и более атомов водорода, входящих в структуру бензольных колец.

Вещества могут образовываться при взаимодействии хлора с ароматическими углеводородами в кислородной среде, в частности, при хлорировании питьевой воды.

К другим источникам веществ относятся: термическое разложение различных химических продуктов, сжигание осадков сточных вод и других отходов, металлургическая промышленность, выхлопные газы автомобилей, возгорание электрического оборудования, лесные пожары, и наконец производство некоторых видов продукции.

30.

Разнообразие химической структуры диоксинов определяется числом атомов и типом галогена, возможностью изомерии. В настоящее время насчитывается несколько десятков семейств этих ядов, а общее число соединений превышает 1 тыс.

2,3,7,8-тетрахлордибензо-пара-диоксин (ТХДД, «диоксин») - самый токсичный представитель группы.

При оценке токсичности 2,3,7,8-тетрахлордибензо-пара-диоксина выявляются значительные межвидовые различия: Морская свинка – 0,6 – 2,5; Норка – 4; Крыса – 22 – 45; Обезьяна – меньше 70; Кролик - 115-275; Мышь - 114-280; Собака - менее 300; Лягушка-бык - менее 500; Хомяк – 5000.

Примечание: токсичность ТХДД для человека, по-видимому, сопоставима с таковой для приматов.

Вещество образуется как побочный продукт в процессе синтеза 2,4,5-трихлофеноксиуксусной кислоты и трихлорфенола.

Примером неблагоприятного воздействия на экосистемы ТХДД является химическая война во Вьетнаме, где американцы и их союзники применили не менее 100 тыс. тонн гербицидов. При этом в окружающую среду поступило 200-500 кг диоксина (более 1 109 смертельных доз для приматов).

Во внешней среде ТХДД абсорбируются на органических, пылевых и аэрозольных частицах, разносятся воздушными потоками, поступают в водные экосистемы. В донных отложениях стоячих водоемов яд может сохраняться десятки лет. В почве возможна медленная микробная деградация диоксинов. Период полуэлиминации из почвы определяется конкретными климато-географическими условиями и характером почвы.

Ежесуточное предельно допустимое поступление диоксина в организм человека в разных странах определено по-разному: от 1 до 200 пг/кг массы.

Токсикокинетика. Диоксины, поступившие в организм с зараженной пищей или ингаляционно, подвергаются медленной биотрансформации. Значительная часть токсикантов накапливается в жировой ткани.

Токсикодинамика. Для токсического процесса характерен продолжительный скрытый период. После введения яда в летальных дозах грызунам гибель развивается спустя 3 и более недель. У крупных животных этот период еще более продолжителен. Течение даже острого поражения крайне вялое и растягивается на месяцы.

32.

Полихлорированные бифенилы (ПХБ) это класс синтетических хлорсодержащих полициклических соединений, используемых в качестве инсектицидов. В США для этой цели они производились с 1929 по 1977 год под промышленной маркой Арохлор. Кроме того, ПХБ широко использовались при производстве электрооборудования, в частности, трансформаторов и усилителей (охлаждающие жидкости), а также в качестве наполнителей при производстве красителей и пестицидов, смазочных материалов для турбин, гидравлических систем, текстиля, бумаги, флуоресцентных ламп, телевизионных приемников и др.

При остром воздействии вещества обладают сравнительно низкой токсичностью. В зависимости от строения изомера и вида экспериментального животного средняя смертельная доза колеблется в интервале от 0,5 до 11,3 г/кг. Хлорзамещенные бифенилы в мета- и параположении более токсичны.

Токсикокинетика. В организм млекопитающих и человека ПХБ могут проникать через кожу, легкие и желудочно-кишечный тракт. На производстве основной способ поступления веществ - через кожные покровы, в то время как в повседневной жизни большее количество веществ поступает в организм с загрязненной пищей.

Попав в кровь, вещества быстро накапливаются в печени и мышцах, откуда затем, перераспределяются в жировую ткань. Коэффициент распределения веществ в тканях - мозг: печень: жир - составляет в среднем 1: 3,5: 81.

Токсикодинамика. Наибольшую опасность представляют подострые и хронические воздействия ПХБ, которые приводят к развитию многообразных эффектов: прогрессивному падению веса, хлоракне, выпадению волос, отекам, инволюции тимуса и лимфоидной ткани, гепатомегалии, угнетению костного мозга, нарушению репродуктивных функций и т.д. Изменения иммунного статуса не однозначны: отмечается как иммуносупрессивное, так и активирующее действие ПХБ. У человека наиболее достоверным проявлением действия ПХБ является патология кожных покровов, и в частности, хлоракне.

В условиях производства или при проживании на зараженной местности, отмечается неблагоприятные последствия действия токсикантов на репродуктивные функции женщин и плод. Это проявляется преждевременными родами, снижением веса новорожденных, микроцефалией, отставанием в умственном и физическом развитии детей.

30.

Хлорированные бензолы (ХБ) - это группа химических соединений, используемых в качестве органических растворителей, пестицидов, фунгицидов, компонентов химического синтеза. Они представляют собой молекулу бензола, в которой атомы водорода замещены 1 - 6 атомами хлора.

Как правило, воздействию веществами люди подвергаются в производственных условиях, однако в последнее время достаточно высокое количество веществ стали обнаруживать в окружающей среде: воздухе, почве, продовольствии, воде. Чем выше степень хлорирования молекулы, тем ниже растворимость в воде, летучесть веществ.

Токсикокинетика. Хлорированные бензолы - липофильные вещества и потому способны к биоаккумуляции в тканях животных и человека (хотя и в меньшей степени, чем другие хлорированные ароматические углеводороды).

В опытах на животных показано, что вещества, попавшие в организм метаболизируют в печени при участии цитохром-Р-450-зависимых оксидаз до хлорированных фенолов, через стадию ареноксидов.

Хлорированные фенолы выделяются с мочой и калом в основном в форме серусодержащих конъюгатов. Скорость элиминации низка. Полагают, что ХБ могут депонироваться в тканях человека на период до 15 лет.

Токсикодинамика. Основным проявлением острого токсического действия ХБ является porphyria cutanea tarda. Этот эффект, в частности, развился у лиц, употребивших в пищу зерно, обработанное гексахлобензолом.

Исследования на животных свидетельствуют о способности веществ (гексахлобензола, дихлорбензола) вызывать карциному печени, почек и аденому паращитовидной железы. Исследования на генотоксичность веществ дают отрицательных результат. Не удалось получит объективных данных о канцерогенности ХБ для человека.

31.

Кадмий (Cd) представляет собой серебристый, кристаллический металл, напоминающий цинк. Валентность кадмия в его кислородных соединениях: +1, +2. Чаще металл образует двухвалентные соединения, включая оксиды, гидроксиды, сульфиды, селениды, теллуриды, галлиды. В водных растворах образует с галлидами комплексные анионы.

Металл широко распространен в окружающей среде. Он встречается в природе в форме редких минералов гринокит (CdS) и отавит (CdCO4). Оба соединения обнаруживаются в цинковых и цинково-свинцовых рудах. Потребление кадмия и загрязнение им почвы, воды и воздуха в результате производственной деятельности неуклонно возрастает. Источниками большинства антропогенных загрязнений являются: выброс кадмия в сточные воды, производство и использование фосфатных удобрений, сжигание отходов, угля бензина и т.д. Однако больше всего в окружающую среду кадмий поступает в виде побочного продукта при выплавке и электролитической очистке Zn.

Кадмий относится к числу высокотоксичных металлов. Он действует на самые разные органы и системы. Металл обладает очень высокой кумулятивной способностью. Пары кадмия, образуемые при плавлении, являются чрезвычайно опасными и представляют собой основную причину острых смертельных интоксикаций металлами. Установленные и подозреваемые эффекты кадмия наряду с его широким и все возрастающим использованием и накоплением в окружающей среде заставляют предположить, что этот металл представляет наивысшую угрозу человечеству, как экополлютант.

В большинстве стран отсутствует регламент на содержание Сd в пищевых продуктах. ВОЗ рекомендует максимально допустимую дозу металла, поступающую с водой и пищей Ц до 400-500 мкг/неделю, в качестве максимально допустимого уровня заражения воздуха концентрацию 10 мкг/м3 .

Токсикокинетика. Поступление кадмия per os - основной путь воздействия, не связанный с производством. Содержание Сd в различных пищевых продуктах колеблется от 0,001 до 1,3 частей на миллион (1,3 мкг/г), а суточное потребление Сd с водой и продовольствием составляет в среднем 10-30 мкг. В сильно загрязненных регионах потребление может составить до 400 мкг/сутки. Особенно много Сd содержится в печени и почках убоины, а также морепродуктах. Растительные продукты в целом содержат больше Сd, чем мясные.

Абсорбция кадмия в первую очередь зависит от пути поступления, а затем уже от строения соединения. Большинство солей кадмия плохо абсорбируются в желудочно-кишечном тракте. По расчетам лишь около 5% вещества, попавшего в желудочно-кишечный тракт, всасывается в кровь, хотя ряд факторов, таких как характер пищи и железодефицитная анемия, могут усиливать поступление вещества. Время прохождения металла по желудочно-кишечному тракту достаточно продолжительно, вероятно, вследствие захвата его клетками слизистой оболочки.

Абсорбция в дыхательной системе проходит достаточно полно. В зависимости от степени растворимости в воде ингалированных соединений всасывается до 90% вещества проникшего в глубокие отделы дыхательной системы.

Поступивший в кровь кадмий быстро связывается эритроцитами и альбуминами плазмы. Связавшийся с плазмой металл быстро переходит в различные ткани и органы, преимущественно печень и почки (до 50% поступившего в организм Сd).

Токсикодинамика. Кадмий и его соединения представляют реальную опасность, как при остром, так и хроническом воздействии.

Острая интоксикация может развиться как при ингаляционном, так и алиментарном поступлении Сd в организм. Однако для этого нужны достаточно высокие дозы и концентрации.

Проявления хронического воздействия кадмия наиболее отчетливо прослеживаются со стороны дыхательной системы и почек. Поражение легких возникает исключительно при ингаляционном способе воздействия, в то время как почки страдают при поступлении кадмия в организм всеми возможными способами.

Иммуносупрессивное действие кадмия может быть причиной канцерогенеза, встречающегося у работников, контактирующих с металлом.

11.

После резорбции в кровь вещество в соответствии с градиентом концентрации распределяется по всем органам и тканям. Распределение - динамический процесс, его направленность во многом определяется соотношением содержания ксенобиотика во внешней среде, на месте аппликации, в крови и тканях. По большей части вещества распределяются в организме неравномерно. Неодинаково и время пребывания ксенобиотиков в различных органах и тканях. Некоторые избирательно накапливаются в том или ином органе, ткани, даже клетках определенного типа. Так, ботулотоксин избирательно связывается с нервными окончаниями холинэргических нервных волокон, 6-гидроксидофамин - накапливается в катехоламинэргических нейронах ЦНС, свинец, стронций - в костях и т.д. Причем если время нахождения первых двух токсикантов в соответствующих клетках насчитывает несколько часов - суток, то последние агенты могут сохраняться в костной ткани годами. Однако строение, физические свойства и химически состав клеток во многом одинаковы, поэтому такое неравномерное распределение ксенобиотика в организме или избирательное накопление в отдельных тканях встречается не так часто.

Токсический процесс далеко не всегда характеризуется повреждением именно тех структур, в которых вещество накапливается в наибольшем количестве. Выраженность токсического эффекта пропорциональна концентрации ксенобиотика в месте действия на биологически значимую "структуру-мишень". Для того, чтобы эффект был сильным необходима высокая концентрация вещества в "биофазе" чувствительных рецепторов. Например, чтобы вызвать отравление, в основе которого лежит нарушение деятельности сердца, буфотоксин должен накопиться в сердечной мышце. Его содержание в мозге, печени, поджелудочной железе практически не имеет значение для развития острого токсического процесса. При интоксикации диэтиламидом лизергиновой кислоты (ДЛК) менее 1% вещества поступает в мозг, но именно со стороны ЦНС выявляются изменения, составляющие основу острого отравления. Свинец, накопившийся в костях, практически не обладает биологической активностью. Принципы распределения

На процесс перехода токсикантов из крови в ткани (и наоборот) влияют следующие структурно-функциональные особенности органов:

- свойства стенок их капиллярного русла;

- степень вазкуляризации и интенсивность кровоснабжения органов;

- свойства клеток, формирующих орган, и особенно клеточных мембран;

- кислотно-основные свойства тканей;

- степень сродства молекулярных элементов тканей к токсикантам.

На характер распределения ксенобиотиков в организме, кроме того, оказывают влияние вид животного, его пол, возраст и др.

2.

1. ТЭС. (выброс монооксида углерода СО, продукты неполного сгорания углеводорода, концерогены, ароматические соединения, тяжелые металы).

2. Вредные отходы промышленности: химические, нефте-химические, металургические, горно-обогатительные, целлюлозно-бумажные.

3. Транспорт (авто, ж/д, авиа, морской, речной, космический) – СО, NO, сажа неполного сгорания, свинец, топливо)

4. Предприятия использующие вредные вещества в качестве сырья.

5. Производство и применение радиоактивных веществ.

6. с/х – пестициды, удобрения, биоактивные добавки в корма животных.

7. Бытовая химия, пищевые добавки, косметика

8. Природные токсины.

4.

Основные загрязнители.

1.Загрязнители воздуха: *оксиды серы, азота и углерода; *озон; *хлор; *углеводороды – летучие органические соединения; * фреоны – разрушители озона, хлорфторводороды (асбест, угольная пыль, кремний, металлы).

2.Загрязнители воды и почвы: металлы, пестициды, нитраты, фосфаты, нефть и нефтепродукты, органические растворители (производные бензола и тэтрахлорэтилена); *низкомолекулярные гамогенированные углеводороды – хлороформ, дихлорэтан; * полициклические аромоуглеводороды (имеют бензольное кольцо); * полихлорированные бифенилы; *диоксины; *дибензофураны; *кислоты.

18.

Эпидемиологическое изучение канцерогенности вещества, действующего как профессиональный фактор или экополлютант должно строиться с учетом определенных принципов:

- учитываемые в исследовании случаи раков должны быть подтверждены документально на основании клинического или патологоанатомического материала;

- следует оговаривать сроки, в рамках которых оценивается частота возникновения новообразований в популяции. В группу регистрируемых, должны включаться лица, работавшие (проживавшие) в оцениваемый период времени в условиях, которые могут быть объективно охарактеризованы;

- выявленную частоту возникновения новообразований следует сравнивать с ожидаемой частотой. Эта характеристика может быть получена в административных структурах министерства здравоохранения, накапливающих информацию об онкологической заболеваемости населения. Сравнение должно быть стандартизовано по возрастным группам;

- после установления общей онкологической обстановки необходимо выяснить какие виды раков встречаются чаще в обследуемой популяции;

- анализ полученных данных необходимо проводить с учетом продолжительности скрытого периода в развитии опухоли. Если опухоль развилась спустя непродолжительное время после действия токсиканта, её развитие вероятно не связано с этим действием;

- в ходе обследования необходимо выявить возможность действия других факторов, влияющих на канцерогенез: курение, злоупотребление лекарствами, наследственную предрасположенность к новообразованиям, действие иных потенциальных канцерогенов и т.д.

- желателен мониторинг окружающей среды, либо информация о содержании вредных веществ на рабочем месте;

Конкретный метод установления причинно-следственных связей между действием оцениваемого фактора и развитием неопластических процессов выбирается в соответствии с общей методологией эпидемиологических исследований (см. раздел "Эпидемиологические методы исследования в токсикологии").

32.

Ртуть

Хлорид ртути вызывает аборты, однако, трансплацентарное поступление неорганических соединений ртути в организм плода не приводит к врожденным аномалиям. Пары ртути, действуя ингаляционно, вызывают нарушения менструального цикла. Элементарная ртуть также обладает способностью проникать через плацентарный барьер. Повышенное содержание ртути в плаценте и тканях плода обнаружено при обследовании женщин стоматологов, имевших контакт с ртутными амальгамами.

Метилртуть вызывает серьёзное поражение мозга плода, сопровождающееся нейрональной дегенерацией и пролиферацией глии, особенно выраженной в коре мозжечка и конечного мозга. Глубина нарушений зависит от сроков беременности. Особенно опасно воздействие токсиканта во втором и третьем триместре беременности. Некоторые проявления патологических изменений выявляются сразу после рождения, другие, спустя несколько месяцев. Основные симптомы поражения: спастичность, гипотония, микроцефалия, нарушение движения глазных яблок (нистагм, стробизм), умственная отсталость, нарушение роста зубов. Отсутствуют данные о дозовой нагрузке, приводящей к патологии.

Свинец

То, что металл влияет на репродуктивные функции, известно более 100 лет. На 12 - 14 неделях беременности вещество начинает проникать через плаценту. При длительном действии на организм матери свинец накапливается и в тканях плода. Последствиями этого являются: аборты, преждевременные роды, перинатальная гибель. Имеются сообщения о неврологических нарушениях у детей, рожденных женщинами, в крови которых содержание свинца более 10 мг/ дл. Данные о способности свинца вызывать врожденные уродства отсутствуют.

Действие свинца на отцов также пагубным образом сказывается на развитии плода, однако пока не ясно, является ли это следствием прямого влияния на сперматогенез (хромосомные аберрации, снижение числа сперматозоидов, изменение их формы и активности). Не исключено, что в ряде случаев, причина нарушений - поражение матери в домашних условиях свинцовой пылью, приносимой отцом с производства.

Дети, подвергшиеся воздействию свинца в утробе матери, требуют длительного и постоянного контроля состояния их здоровья. Необходимо контролировать количество свинца в плазме крови, протопорфиринов в эритроцитах, оценивать неврологический статус.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: