Шаг третий: отправка зондов в черную дыру

Использование черных дыр в качестве порталов-червоточин имеет
бесспорные преимущества. Как мы обнаружили, во вселенной су-
ществует достаточно много черных дыр. Если можно будет решить
многочисленные технические проблемы, то любой высокоразви-
той цивилизации придется серьезно рассматривать их в качестве
аварийного люка для побега из нашей вселенной. Кроме того, при
прохождении сквозь черную дыру мы не связаны тем ограничением,
что невозможно вернуться во времени в момент раньше того, когда
была построена сама машина времени. Портал-червоточина в цен-
тре кольца Керра может соединять нашу вселенную с совершенно
иными вселенными или же другими точками в нашей вселенной.
Единственный способ выяснить это — проведение эксперимента
с зондами и использование суперкомпьютера для вычисления рас-
пределения масс во вселенных и обработки квантовых поправок к
уравнениям Эйнштейна, которые вносит портал-червоточина.

В настоящее время большинство физиков считает, что путеше-
ствие сквозь черную дыру стало бы фатальным. Однако наше пони-
мание физики черных дыр находится еще в младенческой стадии, и
такое предположение до сих пор не было проверено. Представим, в
качестве обратного аргумента, что путешествие через черную дыру
и в особенности через вращающуюся черную дыру Керра возможно.


В таком случае любая высокоразвитая цивилизация серьезно задума-
лась бы об исследовании внутренней части черных дыр.

Поскольку путешествие через черную дыру стало бы путеше-
ствием в один конец, а также в силу неимоверных опасностей вблизи
черной дыры, вполне вероятно, что высокоразвитая цивилизация
попыталась бы определить местонахождение ближайшей звездной
черной дыры и сначала отправила зонд для ее исследования. Ценная
информация могла бы быть отправлена с зонда еще до пересечения
им горизонта событий и потери связи. (Путешествие за горизонт
событий, скорее всего, окажется смертельным из-за жесткого ради-
ационного поля, окружающего его. Лучи света, падающие на черную
дыру, приобретают синее смещение и потому при приближении к
центру будут обладать большей энергией.) Любой зонд, проходящий
рядом с горизонтом событий, должен быть снабжен соответствую-
щей защитой против этого барьера жесткой радиации. Кроме того,
это может дестабилизировать саму черную дыру и горизонт собы-
тий превратится в сингулярность, тем самым закрывая портал. Зонд
определил бы точный уровень радиации вблизи горизонта событий,
а также то, может ли портал-червоточина оставаться стабильным, не-
смотря на весь этот поток энергии.

До момента пересечения зондом горизонта событий он должен
передать собранные им данные на расположенные неподалеку кос-
мические корабли, но тут кроется еще одна проблема. Наблюдателю
на каком-то из этих космических кораблей казалось бы, что зонд
замедляется во времени при приближении к горизонту событий, по-
сле пересечения которого он, в сущности, казался бы застывшим во
времени. Чтобы избежать этой проблемы, зондам необходимо было
бы передать собранную информацию еще на каком-то расстоянии от
горизонта событий, иначе радиосигналы были бы настолько искаже-
ны красным смещением, что прочесть данные было бы невозможно.

Шаг четвертый: построить медленно
движущуюся черную дыру

После того как при помощи зондов удастся определить параметры
у горизонта событий черных дыр, следующим шагом могло бы стать
создание медленно движущейся черной дыры для эксперименталь-


ных целей. Цивилизация третьего типа могла бы попытаться вос-
произвести результаты, полученные Эйнштейном, — а именно, что
черные дыры не могут образоваться из кружащейся массы пыли и
частиц, — и воспользоваться ими.

Эйнштейн пытался показать, что скопление вращающихся частиц
не сможет достичь радиуса Шварцшильда само по себе (а потому
существование черных дыр невозможно). Сами по себе кружа-
щиеся массы могут и не сжаться в черную дыру, однако остается
возможность (не забудем, что речь идет о цивилизации типа III) ис-
кусственного медленного вливания новой энергии и вещества во
вращающуюся систему, что заставит массы постепенно сжаться и
пересечь радиус Шварцшильда. Таким способом цивилизация могла
бы управлять процессом образования черной дыры.

Например, можно представить, что цивилизация третьего типа
соберет нейтронные звезды размером с Манхэттен, а массой с наше
Солнце и образует вращающееся скопление этих мертвых звезд.
Постепенно звезды притянутся друг к другу. Однако, как показал
Эйнштейн, они никогда не пересекут радиус Шварцшильда. В этот
момент ученые этой высокоразвитой цивилизации могут осторожно
добавить новые нейтронные звезды в это скопление. Этого может
оказаться достаточно, чтобы нарушить баланс, что вынудит эту
вращающуюся массу нейтронного вещества сжаться до размеров
меньше радиуса Шварцшильда. В результате этого скопление звезд
сожмется во вращающееся кольцо, черную дыру Керра. Управляя
скоростью и радиусами различных нейтронных звезд, такая цивили-
зация могла бы заставить черную дыру Керра вращаться настолько
медленно, насколько она пожелает.

Или же высокоразвитая цивилизация могла бы попытаться
собрать небольшие нейтронные звезды в единое неподвижное
скопление, масса которого превысила бы три солнечных, что при-
близительно составляет предел Чандрасекара для нейтронных
звезд. Перейдя этот предел, звезда взорвется под воздействием
собственной гравитации. (Высокоразвитой цивилизации придется
быть очень осторожной, чтобы в процессе создания черной дыры не
произошел взрыв сверхновой. Сжатие черной дыры должно будет
осуществляться постепенно и с высокой точностью.)


Конечно же, для любого, кто пересечет горизонт событий, это
гарантированно станет путешествием в один конец. Но для высоко-
развитой цивилизации, столкнувшейся с угрозой неминуемого вы-
мирания, путешествие в один конец может оказаться единственным
выходом. Кроме того, при пересечении горизонта событий все еще
остается проблема радиации. Световые лучи, следующие за нами за
горизонт событий, набирают все больше энергии, и частота их все
увеличивается. Весьма вероятно, что это вызвало бы радиационный
дождь, который оказался бы смертельным для любого астронавта,
прошедшего за горизонт событий. Любой высокоразвитой цивили-
зации придется вычислить точный уровень этой радиации и создать
соответствующую защиту, чтобы не оказаться зажаренными.

И наконец, есть проблема стабильности: будет ли портал в центре
Керрова кольца достаточно стабилен, чтобы можно было совершить
полный переход? Математика данного вопроса не совсем ясна, по-
скольку для совершения правильного подсчета нам пришлось бы
обратиться к квантовой теории гравитации. Может оказаться, что
Керрово кольцо сохраняет стабильность лишь в весьма жестком диа-
пазоне параметров при падении вещества в черную дыру. Этот во-
прос требует внимательного рассмотрения при помощи математики
квантовой гравитации и экспериментов на самой черной дыре.

В целом, переход через черную дыру несомненно окажется очень
трудным и опасным путешествием. Теоретически нельзя исключать
такую возможность до того, как будут проведены всесторонние
эксперименты и выполнен правильный расчет всех квантовых по-
правок.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: