Аналитический цикл и его этапы. Универсальная система химического анализа

Рассмотрим конкретную экоаналитическую задачу. Предприятие собирается инвестировать средства в строительство уникального сооружения, например, «Донбасс-арены», и нуждается в заключении о качестве почв того участка, где будет развернута стройка. Задача аналитиков – исследовать качество почвы в месте предполагаемого строительства. Совместно с заказчиком аналитик должен решить, какие компоненты следует определять в почве, какие общепризнанные надежные методики анализа следует для этого применить, в какой форме представить результаты анализа. Точная постановка аналитической задачи – необходимое условие того, что результаты анализа будут применены с пользой для дела. Процесс анализа начинается с превращения задачи в форме, поставленной потребителем, в собственно аналитическую задачу. Далее следует отобрать пробу из объекта исследования, т.е. отобрать пробу почвы. Затем следуют стадии пробоподготовки и затем измерения. Завершает процесс анализа обработка результатов, их сведение воедино, представление в отчете и передача потребителю. Круг замыкается и формируется так называемый аналитический цикл (рис. 1).

Рис. 1. Общая схема процесса анализа (Отто М. Современные методы аналитической химии. – М.: Техносфера, 2006. – С. 22)

Аналитический цикл – это общая схема полного аналитического процесса По определению Ю.А. Золотова метод – это определение принципов, положенных в основу анализа безотносительно к конкретному объекту и определяемому веществу. Методика – это полное описание всего хода анализа. В методике в форме подробных прописей оговариваются все детали анализа, включая отбор пробы и представление результатов.

Представим на конкретном примере реализацию аналитического цикла. Перед аналитиком поставлена задача определения диэтиламина. Обычный алгоритм анализа меняется в зависимости от объекта анализа и матричных компонентов. Так, если в анализируемом образце присутствует только одно органическое вещество – диэтиламин, то наличие углерода является достаточным признаком специфичности. В этом случае задача решается хроматографическим методом с пламенно-ионизационным детектором. Если в объекте присутствуют другие органические вещества, но не амины, то специфической является –NH2 группа. В этом случае используют фотометрический детектор с β-динитростильбеном. Если в пробе есть первичные амины, то необходим метод детектирования именно вторичной аминогруппы =NH. Если есть другие вторичные амины, то надо дополнительно вводить признаки на наличие двух С2Н5-групп. Видно, что при определении одного вещества в различных композициях нужно применять разные методы, а при необходимости автоматизировать этот анализ – создавать разнообразные измерительные устройства в одном приборе.

Как правило, создавая прибор для определения диэтиламина, выбирают наиболее простые признаки специфичности этого вещества. При этом выигрывают в простоте решения конкретной аналитической задачи, но проигрывают в решении проблемы автоматизации в целом.

Один из главных принципов аналитической химии – селективность определения. Но в случае экоаналитического контроля это не всегда правильно. В объектах окружающей среды необходимо идентифицировать множество неизвестных компонентов, о присутствии которых там даже не подозревали. В данном случае нужна универсальная система химического анализа или многопараметрический анализ. Это, по сути, означает, что одновременно надо проводить качественный и количественный анализ. Для решения такой задачи необходимо изменить всю систему детектирования и использовать все признаки химических соединений. Такими признаками являются:

1) атомный состав. Методы определения элементного состава очень
хорошо развиты. Пламенно-ионизационный детектор может показать, к
какому классу соединений (органические или неорганические) относятся
вещества в пробе.

2) размер молекул. Это не селективный аналитический признак, но его
используют в методах разделения смесей. Размер определяют с помощью

молекулярных сит, полупроницаемых мембран. Возможно и прямое детектирование на основе селективной сорбции молекул определенного размера специфическими сорбентами с фиксированным размером микропор.

3) дипольный момент, характеризующий пространственное
расположение эффективных зарядов в молекуле. Этот параметр может
быть измерен с высокой точностью.

4) электронодонорные и электроноакцепторные свойства.

5) протонодонорные и протоноакцепторные свойства. Твердые
электролиты, например, на основе фосфата титана меняют свои
электрофизические свойства при контакте с протонодонорными или
протоноакцепторными веществами. Возможны и фотоколориметрические
детекторы с применением реагентов, образующих с определяемым
компонентом окрашенный комплекс.

6) индекс хроматографического удерживания. Использовать этот
индекс стало возможным после успехов в синтезе химически
модифицированных сорбентов с заданными свойствами, позволяющими
разделять вещества.

7) масса молекул. Знание массы позволяет однозначно определить
брутто-формулу молекулы. В дальнейшем путем математического
моделирования, возможно, записать все изомеры.

В универсальной системе необходимо разделение функций измерения и функции обработки сигнала. Задача обработки сигналов детекторов решается с использованием ЭВМ, в которой предварительно сформирован банк химико-аналитических данных.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: