Разработка алгоритма определения параметров землетрясений для решения прямой задачи сейсмического мониторинга вертикально-слоистых анизотропных сред

3.4. 1 Общие допущения и предположения

Интерпретация материалов сейсморазведки с применением стандартных автоматизированных систем обработки проводится обычно на основе пространственной слоисто-изотропной модели среды. Но сопоставление результатов интерпретации с данными поискового и разведочного бурения часто обнаруживает наличие систематических расхождений в результатах структурных построений, достигающих иногда нескольких десятков, а то и сотен метров. Это означает очевидно, что слоисто-изотропная модель неадекватна реальной среде и, следовательно, требуется выбор или построение иной модели, учитывающей сейсмологические особенности изучаемого разреза и с помощью которой можно было бы объяснить упомянутые систематические расхождения.

Но более эффективный подход состоит в том, что уже на этапе проектирования полевых работ, а тем более в процессе интерпретации полевых данных, необходимо использовать более общие интерпретационные модели по сравнению с идеализированной слоисто-изотропной моделью. Именно такая тенденция превалирует в современной трехмерной сейсморазведке, с внедрением которой в практику геологоразведочных работ создались благоприятные условия для решения весьма широкого круга фундаментальных и прикладных задач. К числу таких задач относится построение, анализ и применение при интерпретации сейсмических данных особого класса пространственных скоростных и поглощающих моделей среды, которые в самом широком смысле принято называть анизотропными моделями.

Необходимо подчеркнуть, что указанной задаче в последнее время уделяется все большее внимание, что объясняется это двумя основными причинами. Первая из них связана с тем почти очевидным фактом, что информация об анизотропии скоростей позволяет увеличить точность структурных построений: от единиц до нескольких десятков процентов.

Вторая причина состоит в том, что обнаружение анизотропии скоростных и поглощающих свойств среды и корректная интерпретация этого явления позволяет в благоприятных обстоятельствах решать как генетические задачи, связанные с объяснением природы так называемых носителей анизотропии (трещин, разломов, тонкой слоистости и др. объектов), так и чисто прикладные задачи, такие как, например, структурно-формационные, либо литофациальные задачи. Как показывает анализ литературы, при всем многообразии моделей, используемых при изучении сейсмической анизотропии, в сейсморазведке наибольший практический ин­терес вызывают модели сред, где анизотропия обусловлена либо субгоризонтальной слоистостью, либо субвертикальной трещиноватостью осадочных отложений, либо одновременным действием этих факторов. Именно такие модели являются основным объектом исследований, результаты которых из­лагаются в настоящей работе.

Круговые сейсмические наблюдения уже давно используются в практике сейсморазведочных работ для решения различных геологических задач. Одна из таких задач, которой в последнее время уделяется все большее внимание в виду ее практической значимости, состоит в изучении анизотропии осадочных пород, обусловленной вертикальной (субвертикальной) трещиноватостью среды. В работах как отечественных, так и зарубежных авторов при изучении этого типа анизотропии обычно предполагается, что размеры носителей анизотропии намного меньше по сравнению с длинами зондирующих сейсмических волн. Такое предположение часто оправдано и подтверждается как при физическом моделировании, так и при полевых наблюдениях. Вместе с тем вполне реальна и такая ситуация, когда поперечные размеры трещин или разломов в земной коре сопоставимы, а иногда намного больше длины используемых сейсмических волн. В этих условиях теория трансверсально-изотропных сред уже не подходит и требуется иной подход.

В данной работе рассматриваются простейшие математические модели распространения сейсмических волн в таких средах с целью изучения влия­ния различных параметров трещиноватости на сейсмическую анизотропию и их (моделей) последующего использования при количественной интерпрета­ции результатов наблюдений прямых, отраженных и преломленных волн в различных модификациях с данными электроразведки. При этом предполагается, что азимутальная сейсмическая анизотро­пия среды обусловлена системой вертикальных или почти вертикальных и параллельных между собой пластов со средней мощностью dи с равномерным распределением в пространстве. Предполагается также, что их пространственная плотность ρ такова, что межпластовые расстояния не меньше мощности тонкого слоя. С другой стороны предполагается, что мощность отдельных пластов d больше длины зондирующей сейсмической волны. Последнее допущение позволяет использовать при решении прямой задачи законы геометрической сейсмики и фактически является основным в последующих выкладках и рассуждениях. Иными словами, в данной главе нами рассматривается простейшая лучевая схема распространения волн в неоднородных средах, существенно упрощающая решение задачи.

Геологическим аналогом рассматриваемой модели могут служить системы субвертикальных разломов или зон субвертикальной трещиноватости горных пород, которые далее - достаточно условно - мы будем называть тонкими вертикальными пластами. Полагая, что такие пласты насыщены флюидами (например, водой), в дополнение к сделанным допущениям примем также, что скорость волн в основной породе V0 больше скорости волн V1в тонких пластах, которые к тому же принимаются изотропным.

3.4.2 Годограф прямой волны

Поместим общий источник возбуждения сейсмических волн в центр кругового профиля наблюдений радиуса R и выберем такую систему полярных координат (R,Θ), чтобы полярная ось проходила вдоль простирания вертикальной слоистости, а полюс совпадал с точкой возбуждения, предполагая при этом - в целях симметрии результатов -, что последняя находится в центре межпластового пространства. Очевидно, что при такой системе наблюдений искомая функция - азимутальное время наблюдений tR0-будет контролироваться числом пересечений пластов по выбранному азимуту, который в среднем равен 260 В рамках принятых выше допущений можно заменить эту совокупность пластов одним толстым пластом с эквивалентной мощностью He=R<ρdsinΘ и расположить его в центре линии, соединяющей точку возбуждения О и точку приема Р с полярными координатами R и Θ (Рисунок 3.10).


Рисунок. 3.10 - Модель тонкого пласта для расчета времени первых вступлений

С учетом того, что скорости волн в основной породе и в тонких пластах равны Voи Viсоответственно, можно сразу же получить общее выражение для искомого азимутального времени прохождения прямой волны из точки О в точку P:

tR = top = toA + tAB + tBP= OA / Vo + AB / Vi + BP / Vo. (3.1)

При этом очевидно, что AB=He/cosα1, а из центральной симметрии рисунка следует, что OA=BP и OA + BP = 2S/sine = 2S/cosα, где 2S = PP'-He = RsinΘ-RρdsinΘ, e- угол выхода прямой волны из точки возбуждения, α- угол падения волны на эквивалентный пласт, αα1–угол преломления на тонком пласте, определяемого из известного закона преломления.

3.5. Механическая модель волноводов по данным инструментальных наблюдений


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: