Аппаратура

На рисунках приведены две основные схемы спектрофотометров, измеряющих спектральный апертурный коэффициент отражения данного объекта относительно рабочего стандарта с известной спектральной характеристикой:

Рисунок 27 – Схема работы спектрофотометра, где измеряемый образец освещается белым светом. Монохроматор расположен в исходящем потоке.

Рисунок 28 – Схема работы спектрофотометра, где змеряемый образец освещается монохроматическим светом.

Для реализации диффузного освещения в спектрофотометрах применяется интегрирующая сфера. Согласно требованиям Международной комиссии по освещению она может иметь любой диаметр при условии, что суммарная площадь отверстий не превышает 10% ее внутренней отражающей поверхности. В портативных приборах диаметр сферы составляет 40-50 мм, в настольных - 150 мм и более [18].

Для высокоточной колориметрии должны быть использованы одно- или двухлучевые спектрофотометры (вторые более предпочтительны), оснащенные призменным или дифракционным монохроматором и фотометрической головкой, которая удовлетворяла бы условиям освещения и наблюдения.

Современные спектрофотометры со сферической геометрией, как правило, являются двухлучевыми. Второй луч используется для оценки света, отраженного от стен сферы. Он выходит из сферы через специальное боковое отверстие и с помощью направляющего зеркала попадает на спектральный анализатор, идентичный спектральному анализатору света, отраженного образцом. Использование второго луча позволяет измерять коэффициент отражения образца по отношению отраженного от образца света к свету, отраженному сферой. Измерения с использованием двухлучевой схемы являются более точными по сравнению с результатами, полученными с использованием однолучевых приборов, поскольку при этом значительно уменьшаются погрешности, обусловленные дрейфом характеристик электронных компонентов, изменением спектра источника излучения, а также отклонением оптических характеристик интегрирующей сферы.

При использовании этих инструментов величина воспроизводимости, используемая для оценки коэффициентов спектрального отражения, должна быть меньше, чем 0,2 % относительного различия в результатах измерений, или 0,001 абсолютного различия.

Воспроизводимость в течение длительного периода времени не должна превышать эти величины более чем в 3 раза.

Воспроизводимость определяют в соответствии ГОСТ Р ИСО 5725.

Точность должна быть меньше, чем 0,5% относительная или 0,002 абсолютная.

Спектрофотометры описанного выше типа предпочтительнее, чем спектрофотометры упрощенного типа и колориметр, если требуется объективное сравнение эталонов цвета, вызванных влиянием атмосферных условий, а также других химических или физических воздействий.

Для случаев:

а) объективной оценки цветовых различий между образцами;

б) объективной оценки цвета;

в) определения отклонений в цвете при изготовлении окрашенных изделий;

можно взять упрощенный спектрофотометр, снабженный фотометрической головкой, которая удовлетворяет выбранным условиям освещения и наблюдения в соответствии с ГОСТ Р (ИСО 7724.1), с учетом текстуры поверхности, свойств отражения испытуемого лакокрасочного покрытия и информации, которую необходимо получить при измерении, за исключением тех случаев, когда надо измерять многоцветные лакокрасочные пленки и пленки с очень крутыми кривыми спектрального отражения. Этот прибор представляет собой фотометр, содержащий 16 интерференционных фильтров, обеспечивающих равномерное излучение в диапазоне длин волн от 400 до 700 нм с интервалом 20 нм или менее.

Для воспроизводимости с коротким и длинным временным интервалом относительная погрешность должна быть не более 1 %, а среднеквадратичное отклонение не более 0,004.

Для сравнения измеренных спектральных фотометрических характеристик с распределением относительной спектральной мощности стандартного источника освещения Sl и функциями цветового равенства 10 (l), 10 (l), 10 (l) и сложения в соответствии с ГОСТ Р (ИСО 7724.1) рекомендуется применять компьютерные устройства с памятью хранения.

В автоматических спектрофотометрах эти вычисления выполняются с помощью электронных или механических интеграторов.

Интегрирование можно осуществить оптически с трехкоординатными фильтрами, которые необходимо подобрать так, чтобы измерения укладывались в простое линейное соотношение с координатами цвета. Приборы такого типа, называемые трехкоординатными колориметрами (компараторами цвета), должны быть укомплектованы фотометрической головкой, обеспечивающей условия освещения и наблюдения в соответствии с ГОСТ Р (ИСО 7724.1).

Три фильтра должны иметь спектральные коэффициенты пропускания tx(l), ty(l), tz(l), связанные с выбранными функциями подгонки цвета, относительным распределением спектральной энергии стандартного источника освещения, источника света прибора и чувствительностью фотоэлемента. За небольшим исключением выпускаемые колориметры по определению координат цвета не обеспечивают точной подгонки цвета. Фильтр со спектральным коэффициентом пропускания tx полностью поглощает излучение с длиной волны до 500 нм. Координату х10 поэтому получают пересчетом коэффициентов отражения, измеренных с фильтрами tx и tz, по различным константам с последующим сложением.

Из-за сложности подгонки фильтров до необходимых параметров, такие колориметры не пригодны для измерения самого цвета и применяются для измерения различий в цвете. Даже в этом случае существуют трудности в установлении соответствия эталону цвета, если эталон и образец метамерны. Следовательно, трехкоординатные колориметры более применимы в случаях:

б) объективной оценки цвета;

в) определения отклонений в цвете при изготовлении окрашенных изделий.

Повторяемость измеренных величин координат должна быть меньше, чем большая из двух следующих величин: 0,2 % измерения или 0,001 (абсолютное значение).

Точность может быть ниже 1 % в зависимости от яркости и формы кривой отражения [18].


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: