Методы очистки воды и почвы

Биологические методы очистки воды находят все большее применение. Эти методы характеризуются простотой и эффективностью. Загрязненные воды собирают в отстойниках или прудах со слабым течением, в которых происходит развитие микроорганизмов и водорослей. Биологический метод очистки воды основан на способности микроорганизмов использовать в качестве ростовых субстратов различные соединения, входящие в состав загрязненных вод. Достоинства данного метода заключаются в возможности удаления из стоков широкого спектра органических и неорганических веществ, простоте аппаратурного оформления, относительно невысоких эксплуатационных расходах. В ходе очистки необходимо строго соблюдать технологический режим и учитывать чувствительность микроорганизмов к высоким концентрациям загрязнителей, что требует предварительного разбавления стоков.

Многие микроорганизмы способны накапливать металлы в больших количествах. В ходе эволюции в них сформировались системы поглощения отдельных металлов и их концентрирования в клетках. Микроорганизмы, помимо включения в цитоплазму, способны также сорбировать металлы на поверхности клеточных стенок, связывать их метаболитами в нерастворимые формы, а также переводить в летучую форму. Селекция в этом направлении и применение новых генноинженерных методов позволяют получать формы, активно аккумулирующие металлы, и на их основе создавать системы биоочистки.

Таким образом, микроорганизмы накапливают растворенные металлы внутриклеточно или, выделяя специфические продукты обмена, переводят их в нерастворимую форму и вызывают осаждение. С помощью биосорбции даже из разбавленных растворов возможно 100%-ное извлечение свинца, ртути, меди, никеля, хрома, урана и 90%-ное - золота, серебра, платины, селена [ 21 ].

Внутриклеточное накопление металлов может быть очень значительным. Так, установлена способность водорослей, дрожжей и бактерий эффективно сорбировать уран из морской воды. Один из способов биосорбции - пропускание раствора металлов через микробный биофильтр, представляющий собой живые клетки, сорбированные на угле. Выпускаются также специальные биосорбенты, например «Биосарбент М» (Чехия), изготовленный в виде зерен размером 0,3-0,8 мм (микробных клеток и носителя); сорбент используют в установках, работающих на ионообменных смолах. Возможно также производство сорбентов на основе микробных полисахаридов. Такие сорбенты можно широко применять в различных условиях, включая природные, они просты в употреблении. Металлы на следующей стадии после концентрирования микроорганизмами следует извлечь из микробной биомассы. Для этого существуют различные способы: недеструктивные, а также экстракция путем разрушения клеток.

Трансформация химических соединений в почвенной среде определяется комплексом физических, химических и биологических факторов. Деградация ксенобиотиков может происходить в результате физических и химических процессов и существенно зависит от типа почвы, ее структуры, влажности, температуры и др. Ксенобиотики временно или постоянно накапливаются в окружающей среде и отрицательно влияют на все живое. Биологическая трансформация соединений, попавших в окружающую среду, может протекать в различных направлениях, приводя к минерализации, накоплению или полимеризации. Но биологическая деградация ксенобиотиков оправдана только тогда, когда происходит их полная минерализация, разрушение и детоксикация [ 21 ].

В природных условиях на ксенобиотики воздействуют микробные сообщества. Благодаря гетерогенности природных микробных сообществ, ксенобиотики в принципе могут подвергаться биодеградации, а наличие в микробных сообществах взаимосвязанных метаболических путей разрушения токсинов является основой для борьбы с загрязнением окружающей среды. Возможности микробных сообществ в отношении деградации многих токсичных соединений значительны. Доказано, что при повторном попадании в среду многих химических соединений время до начала их трансформации (так называемый адаптационный период микроорганизмов по отношению к данному субстрату) значительно короче по сравнению с первым попаданием этого соединения. В течение этого периода микроорганизмы в ходе адаптации к токсическому соединению как субстрату селектируются по способности деградировать данный субстрат. В результате естественным путем возникают микробные популяции, которые могут сохраняться в почве в течение нескольких месяцев после полной деградации токсиканта. Поэтому к моменту нового поступления этого соединения в почву в ней уже присутствуют адаптированные микроорганизмы, способные разрушить токсикант. Таким образом, после попадания ксенобиотиков в почвенную среду из нее можно выделить микробные виды, способные деградировать конкретные ксенобиотики и далее вести селекцию на увеличение скорости деградации. При попадании новых веществ в окружающую среду может происходить природное генетическое конструирование, в результате которого возникают микробные формы с новыми катаболическими функциями. Таким образом, природные генетические механизмы обмена информации позволяют получать эффективные штаммы -деструкторы ксенобиотиков.

В целом биологическую очистку, т.е. удаление загрязнителей посредством стимуляции деятельности биоты в почвах и водоемах, принято называть биоремедиацией (bio - жизнь, remedio - лечение). Это может быть биостимуляция природных микроорганизмов (микробного ценоза) путем внесения удобрений непосредственно в очищаемый участок природной среды или накопления в лаборатории препарата тех микроорганизмов загрязненного ценоза, которые способны наиболее эффективно утилизировать данный загрязнитель. Это может быть, например, улучшение природного ценоза посредством внесения специализированных микроорганизмов, которые ранее были выделены и отселектированы микробиологическими методами и размножены в виде биопрепарата. Во всех случаях биоремедиация предполагает создание в очищаемом участке среды высоких концентраций биогенов (удобрений) и клеток активно размножающихся микробных сообществ (бактерий, актиномицетов, грибов и микроводорослей). Ниже приводится более подробная оценка биоремедиации некоторыми авторами [ 22 ].

Применение активных штаммов микроорганизмов-деструкторов, выделение и использование устойчивых к загрязненным водам микроводорослей, введение в очищающий консорциум высших водных растений привело к созданию новой комплексной биотехнологии очистки и восстановления водоемов, загрязненных нефтепродуктами. Экотехнология позволяет проводить биоремедиацию водоемов, подвергнутых аварийному загрязнению нефтепродуктами, и водоемов, систематически в течение многих лет загрязняемых нефтесодержащими стоками.

Фиторемедиация (использование фотосинтезирующих организмов) позволяет увеличивать энергетические ресурсы очищаемой экосистемы при умеренном использовании органических удобрений для стимуляции микробной деятельности. Она наиболее близка к природным процессам. Опасна ли возможная в таких случаях эвтрофикация - увеличение локальных концентраций удобрений и стимуляция массового размножения микроорганизмов? Опыт позволяет утверждать, что временную эвтрофикацию водоемов и почв можно контролировать и использовать для увеличения продуктивности ценоза. Поэтому фиторемедиация - это контролируемая эвтрофикация водоема для разрушения в нем примесей ненормально высоких концентраций углеводородов. Учитывая, что в любой, даже самой чистой (например, байкальской) воде, предполагается наличие малых концентраций углеводородов и аборигенной микрофлоры, способной к их разрушению, фиторемедиацию следует осуществлять как биотехнологию, основанную на использовании природных процессов.

Активизация процесса биологического разрушения нефтепродуктов требует интенсификации бактериального разложения углеводородов и организации в пространстве процесса переработки этой бактериальной биомассы в пищевых цепях.

Биоремедиация предполагает разработку технологий, задачей которых является использование биохимического потенциала аборигенных, адаптированных или модифицированных биологических систем, прежде всего микроорганизмов, для деградации или детоксикации поллютантов. Биоремедиация обладает большими потенциальными возможностями для предотвращения загрязнения окружающей среды и борьбы с уже имеющимся загрязнением.

По сравнению с другими методами очистки окружающей среды биоремедиация гораздо дешевле. При рассеянном загрязнении, как в случае с пестицидами, применяемыми на огромных площадях, загрязнениями нефтью и нефтепродуктами территорий Западной Сибири, тринитротолуолом, которым загрязнены полигоны и стрельбища, альтернативы биоремедиации просто нет.

Процессы биоремедиации иногда могут осуществляться природными микроорганизмами. Задача ученых в этом случае заключается в стимуляции биодеградативной активности этих микроорганизмов. Если в почве или воде, загрязненной ксенобиотиками, отсутствуют микроорганизмы, способные к деградации данных соединений, целесообразна интродукция туда микроорганизмов-биодеструкторов. В отличие от промышленной биотехнологии, где имеется возможность выдерживать все параметры технологического процесса, биоремедиация, как правило, осуществляется в буквальном смысле этого слова в открытой системе, т.е. в окружающей среде. Поэтому в гораздо большей степени успех процесса биоремедиации зависит от критической массы знаний, опыта, методов, и, наконец, разнообразия микроорганизмов, способных осуществлять реакции биодеградации. В известной мере это будет всегда «ноу-хау», определяемое вышеперечисленными обстоятельствами.

Разработка теоретических основ процессов биоремедиации, самих технологий и их осуществление требуют междисциплинарного подхода и участия специалистов в области генетики и молекулярной биологии, науки об окружающей среде, инженерных дисциплин. Так, например, создан новый микробный препарат«Деворойл», реализующий биотехнологию очистки, основанную на применении микробных ассоциаций, активно утилизирующих углеводороды нефти, и позволяющую в максимально короткий срок очищать от загрязнения нефтью и нефтепродуктами воду и почву [ 23 ]. Специальные добавки в его состав значительно активизируют процесс деструкции нефти. Простота технологии применения препарата связана с использованием обычных механизированных средств для распыления, г. на больших площадях - авиации. Для очистки ливневых сточных вод от нефтяных загрязнений препарат наносится на поверхность плавающих биофильтров, используемых на очистных сооружениях. Области применения препарата «Деворойл»:

- очистка от загрязнения нефтью и нефтепродуктами воды, содержащей более 5% нефти, и почвы с нефтезагрязнением свыше 20 кг/м3;

- очистка от нефтезагрязнений грунтов на территориях аэропортов, депо, автозаправочных и моечных станций, складов ГСМ и хранилищ нефти и нефтепродуктов;

- очистка поверхностных (ливневых) сточных вод от углеводородных загрязнений.

Преимущества использования препарата «Деворойл»:

- высокая активность окисления углеводородов различных классов;

- возрастание эффективности очистки за счет действия препарата не только на границе водонефтяного контакта, но и в толще загрязнителя благодаря подобранной ассоциации гидрофильных и липофильных микроорганизмов, что дает выигрыш во времени, необходимый для нейтрализации загрязнения;

- эффективность использования в природных и антропогенных средах с соленостью до 150 г/л; в широких диапазонах рН среды (2-9), а также в условиях резких колебаний температуры и при значительном химическом загрязнении;

- простота и экономичность (низкие затраты) при высокой эффективности.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: