Раздел 1. Молекулярная биология и генетика

 

Введение

Единый государственный экзамен по биологии проводится в целях определения уровня биологической подготовки выпускников и их отбора для поступления в образовательные учреждения среднего профессионального и высшего профессионального образования. Экзамен по биологии относится к числу экзаменов по выбору и ориентирован как на профильный, так и на базовый уровень Федерального компонента государственного образовательного стандарта среднего (полного) общего образования 2004 г.

Биологическое образование как важный компонент системы общего образования вносит вклад в формирование научного мировоззрения, гигиенических норм и правил здорового образа жизни, экологической грамотности школьников, их общекультурную подготовку. Эти важные проблемы находят отражение в экзаменационной работе ЕГЭ, включающей задания стандартизированной формы – контрольные измерительные материалы (КИМ). Задания экзаменационной работы содержат сведения о достижениях биологической науки на современном этапе: молекулярной биологии, генной и клеточной инженерии, а также вопросы сохранения биоразнообразия как основы устойчивого развития биосферы, экологических закономерностях и глобальных изменениях на планете и др. Это свидетельствует о достаточно высоком уровне требований к биологической подготовке выпускников, что особенно важно в условиях конкуренции на рынке образовательных услуг. Анализ результатов ЕГЭ по биологии за последние 9 лет позволяет сделать определенные выводы.

• Не все участники экзамена умеют четко формулировать свои мысли и обосновывать выводы.

• Много затруднений возникает у учащихся при работе с рисунками, схемами и текстом.

• У учащихся имеются затруднения при выполнении заданий из области цитологии, молекулярной биологии и генетики, что связано с недостаточным пониманием структуры и принципов реализации наследственной информации.

Выявленные недостатки подготовки выпускников оказались следствием недостаточного знания фактов, слабых навыков анализа, обобщения и синтеза информации.

В школьном курсе общей биологии разделы «Молекулярная биология» и «Генетика» являются наиболее сложными для понимания. Облегчению усвоения этих разделов может способствовать решение задач по молекулярной биологии и генетике разных уровней сложности.

Использование таких задач развивает у обучающихся логическое мышление, позволяет им глубже понять учебный материал по этой теме, дает возможность преподавателям осуществлять эффективный контроль уровня усвоенных знаний.

В сборник включены как типовые задачи по молекулярной биологии, так и задачи повышенного уровня сложности.

В предлагаемом пособии рассматриваются общие принципы решения и оформления задач по молекулярной биологии, предлагаются методические приемы, облегчающие решение.

Значительную часть настоящего сборника занимают задачи, которые чаще всего встречаются в тестах ЕГЭ, что поможет обучающимся разобраться с наиболее сложными заданиями и узнать объективный уровень своих знаний.

Для обучающихся, работающих самостоятельно по данному пособию включен теоретический материал по разделу «Молекулярная биология».

Методическое пособие может быть использовано обучающимися и преподавателями общеобразовательных школ, учебных заведений системы СПО при подготовке к ЕГЭ по биологии, в качестве учебного пособия при проведении спецкурсов, факультативов, а также для самоподготовки и самоконтроля учащихся 11 классов.

 

Раздел 1.МОЛЕКУЛЯРНАЯ БИОЛОГИЯ И ГЕНЕТИКА

В 1869 г. швейцарский биохимик Иоганн Фридрих Мишер впервые обнаружил, выделил из ядер клеток и описал ДНК. Но только в 1944 г. О. Эйвери, С. Маклеодом и М. Макарти была доказана генетическая роль ДНК, т. е. было достоверно установлено, что передача наследственной информации связана с дезоксирибонуклеиновой кислотой. Это открытие явилось мощным фактором, стимулирующим изучение наследственности на молекулярном уровне. С тех пор началось бурное развитие молекулярной биологии и генетики.

Нуклеиновые кислоты (от лат. nucleus - ядро) - это природные высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах. В их состав входят: углерод (С), водород (Н), кислород (О), фосфор (Р). Нуклеиновые кислоты представляют собой нерегулярные биополимеры, состоящие из мономеров - нуклеотидов. В состав каждого нуклеотида входят:

· азотистое основание,

· простой углерод - 5-углеродный сахар пентоза (рибоза или дезоксирибоза),

· остаток фосфорной кислоты.

Существует два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота - ДНК, содержащая дезоксирибозу, и рибонуклеиновая кислота - РНК, содержащая рибозу.

Рассмотрим каждый тип нуклеиновых кислот.

ДНК содержится почти исключительно в ядре клетки, иногда в органоидах: митохондриях, пластидах. ДНК - это полимерное соединение с постоянным (стабильным) содержанием в клетке.

Строение ДНК. По своей структуре молекула ДНК представляет собой две полимерные цепи, соединенные между собой и закрученные в форме двойной спирали (рис. 1).

Создана модель структуры ДНК в 1953 г. Д. Уотсоном и Ф. Криком, за что оба были удостоены Нобелевской премии. Ширина двойной спирали всего около 0,002 мкм (20 ангстрем), зато длина ее исключительно велика - до нескольких десятков и даже сотен микрометров (для сравнения: дли­на самой крупной белковой молекулы в развернутом виде не превышает 0,1 мкм).

Нуклеотиды расположены друг от друга на расстоянии - 0,34 нм, а на один виток спирали приходится 10 нуклеотидов. Молекулярная масса ДНК велика: она составляет десятки, и даже сотни миллионов. Например, молекулярная масса r) самой крупной хромосомы дрозофилы равна 7,9 • 1010.

Основной структурной единицей одной цепи является нуклеотид, состоящий из азотистого основания, дезоксирибозы и фосфатной группы. ДНК содержит 4 вида азотистых оснований:

· пуриновые - аденин (А) и гуанин (Г),

· пиримидиновые - цитозин (Ц) и тимин (Т).

Суммарное количество пуриновых оснований равно сумме пиримидиновых.

Нуклеотиды ДНК тоже будут 4 видов соответственно: адениловый (А), гуаниловый (Г), цитидиловый (Ц) и тимидиловый (Т), Все нуклеотиды ДНК соединены в полинуклеотидную цепь за счет остатков фосфорных кислот, расположенных между дезоксирибозами. В полинуклеотидной цепи может быть до 300 000 и более нуклеотидов.

Таким образом, каждая цепь ДНК представляет полинуклеотид, в котором в строго определенном порядке расположены нуклеотиды. Азотистые основания подходят друг к другу настолько близко, что между ними возникают водородные связи. Четко проявляется в их расположении важная закономерность: аденин (А) одной цепи связан с тимином (Т) другой цепи двумя водородными связями, а гуанин (Г) одной цепи связан тремя водородными связями с цитозином (Ц) другой цепи, в результате чего формируются пары А-Т и Г-Ц. Такая способность к избирательному соединению нуклеотидов называется комплементарностью, т. е. пространственное и химическое соответствие между парами нуклеотидов (см. рис. 2).

Последовательность соединения нуклеотидов одной цепи противоположна (комплементарна) таковой в другой, т. е. цепи, составляющие одну молекулу ДНК, разнонаправлены, или антипараллельны. Цепи закручиваются вокруг друг друга и образуют двойную спираль. Большое число водородных связей обеспечивает прочное соединение нитей ДНК и придает молекуле устойчивость, сохраняя в то же время ее подвижность - под влиянием ферментов она легко раскручивается (деспирализуется).

Репликация ДНК (редупликация ДНК) - процесс самовоспроизведения (самоудвоения) макромолекул нуклеиновых кислот, обеспечивающий точное копирование генетической информации и передачу ее от поколения к поколению.

Репликация ДНК происходит в период интерфазы перед клеточным делением. Материнская молекула ДНК (количество цепей ДНК в клетке равно 2n) под действием ферментов раскручивается с одного конца, а затем из свободных нуклеотидов по принципу комплементарности на обеих цепях достраиваются дочерние полинуклеотидные цепи. В результате матричных реакций возникают две одинаковые по нуклеотидному составу дочерние молекулы ДНК, в которых одна из цепей старая материнская, а другая - новая, вновь синтезированная (количество ДНК в клетке становится равным 4n = 2 X 2n).

Функции ДНК.

1. Хранение наследственной информации о структуре белков или отдельных ее органоидов. Наименьшей единицей генетической информации после нуклеотида являются три последовательно расположенных нуклеотида - триплет. Последовательность триплетов в полинуклеотидной цепи определяет последовательность расположения аминокислот одной белковой молекулы (первичную структуру белка) и представляет собой ген. Вместе с белками ДНК входят в состав хроматина, вещества, из которого состоят хромосомы ядра клетки.

2. Передача наследственной информации в результате репликаций при клеточном делении от материнской клетки - дочерним.

3. Реализация наследственной информации (хранящейся в виде генов) в результате матричных реакций биосинтеза через выработку специфических для клетки и организма белков. При этом на одной из ее цепей по принципу комплементарности из нуклеотидов окружающей молекулу среды синтезируются молекулы информационной РНК.

РНК - соединение с колеблющимся (лабильным) содержанием в клетке.

Строение РНК. По своей структуре молекулы РНК менее крупные, чем молекулы ДНК с молекулярной массой от 20-30 тыс. (тРНК) до 1 млн (рРНК), РНК - одноцепочечная молекула, построенная так же, как и одна из цепей ДНК. Мономеры РНК - нуклеотиды состоят из азотистого основания, рибозы (пентозы) и фосфатной группы. РНК содержит 4 азотистых основания:

· пуриновые - аденин (А);

· пиримидиновые - гуанин (Г), цитозин (Ц), урацил (У).

В РНК тимин заменен на близкий к нему по строению урацил (нуклеотид - уридиловый. Нуклеотиды соединены в полинуклеотидную цепь так же, как и в ДНК, за счет остатков фосфорных кислот, расположенных между рибозами.

По месту нахождения в клетке среди РНК выделяют: ядерные, цитоплазматические, митохондриальные, пластидные.

По выполняемым функциям среди РНК выделяют: транспортные, информационные и рибосомные.

Транспортные РНК (тРНК) - одноцепочечные, но имеющие трехмерную структуру «клеверный лист», созданную внутримолекулярными водородными связями (рис. 3). Молекулы тРНК - самые короткие. Состоят из 80-100 нуклеотидов. На их долю приходится около 10% от общего содержания РНК в клетке. Они переносят активированные аминокислоты (каждая тРНК свою аминокислоту, всего известно 61 тРНК) к рибосомам при биосинтезе белка в клетке».

Информационная (матричная) РНК (иРНК, мРНК) - одноцепочечная молекула, которая образуется в результате транскрипции на молекуле ДНК (копирует гены) в ядре и несет информацию о первичной структуре одной белковой молекулы к месту синтеза белка в рибосомах. Молекула иРНК может состоять из 300-3000 нуклеотидов. На долю иРНК приходится 0,5-1% от общего содержания РНК в клетке.

Рибосомные РНК (рРНК) - самые крупные одноцепочечные молекулы, образующие вместе с белками сложные комплексы, поддерживающие структуру рибосом, на которых идет синтез белка.

На долю рРНК приходится около 90% от общего содержания РНК в клетке.

Вся генетическая информация организма (структура его белков), заключена в его ДНК, состоящей из нуклеотидов, объединенных в гены. Напомним, что ген - единица наследственной информации (участок молекулы ДНК), содержащая информацию о структуре одного белка - фермента. Гены, обусловливающие свойства организмов, называют структурными. А гены, которые регулируют проявление структурных генов, называют регуляторными. Проявление (экспрессия) гена (реализация наследственной информации) происходит следующим образом:

Для осуществления экспрессии гена существует генетический код - строго упорядоченная зависимость между основаниями нуклеотидов и аминокислотами (табл. 12).

Таблица 1. Генетический код


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: