Нахождение собственных векторов

Для нахождения собственных векторов преобразуем равенство (8)

АХ = λ Х,

перепишем его в виде

АХ − λ Х = 0, или АХ − λ ЕХ = 0 Þ

(А − λ Е) Х = 0. (9)

Здесь 0 – нулевая матрица. Перейдя к координатной форме, получим однородную систему линейных уравнений. В случае , где – собственные значения, её главный определитель равен нулю (). Поэтому эта система обязательно имеет ненулевые (нетривиальные) решения, так как равный нулю определитель имеет пропорциональные строки, и :

(10)

Подставляя поочерёдно значения , полученные из характеристического уравнения, в уравнения системы (10), найдем n собственных векторов. Собственный вектор можно определить с точностью до постоянного множителя.

3.1. Случай

Матричное уравнение (А − λ Е) Х = 0 имеет развёрнутую форму:

. (11)

Восстановим систему уравнений:

(12)

Это линейная однородная система. При и её главный определитель равен нулю. Поскольку частные определители содержат нулевые столбцы, они также равны нулю. По теореме Крамера эта система имеет бесчисленное множество решений. Ранг матрицы А − λ Е равен единице, и одно уравнение пропорционально другому, т.е. оно является лишним.

Пример 1. Найти собственные значения и собственные векторы линейного преобразования с матрицей .

Решение. Составим характеристическое уравнение:

.

Найдём собственные значения λ, решая уравнение . Его корни λ1 = 6, λ2 = –1. Это собственные значения матрицы А. Собственные векторы находятся из двух систем уравнений

и .

Главный определитель каждой из этих систем равен нулю. Поэтому каждая из этих однородных систем сводится к одному уравнению.

1) При λ1 = 6 имеем систему , которая сводится к уравнению . Из уравнения следует: , или . В качестве собственного вектора, соответствующего собственному значению λ1 = 6, можно взять вектор . Подойдёт также любой вектор, кратный Х 1, например, или .

2) При λ 2 = –1 система имеет вид , она приводится к одному уравнению и . Собственный вектор, соответствующий данному собственному значению λ 2 = –1, (или любой вектор, кратный ему).

Ответ: , , , .

3.1. Случай

Пример 2. Найти собственные значения и собственные векторы линейного преобразования с матрицей .

Решение. Составим характеристическое уравнение

.

Разложим определитель по элементам первой строки:

.

Раскрыв скобки и приведя подобные члены, получим уравнение третьей степени:

;

.

Чтобы решить это уравнение, поступим следующим образом. Методом подбора найдём один из корней уравнения λ1, которым может быть один из делителей свободного члена. Нетрудно убедиться в том, что λ1 = 3 есть корень уравнения. Это значит, что левая часть уравнения делится без остатка на разность (λ − 3), т. е. .

Определим два других корня из уравнения . По теореме Виета получим следующие два корня: λ2 = 6, λ3 = –2. Для нахождения собственных векторов нужно решить три системы уравнений, последовательно подставляя полученные собственные значения.

1) При λ1 = 3 имеем однородную систему уравнений

или

Для решения системы составим матрицу из коэффициентов системы и с помощью элементарных преобразований приведем ее к следующему виду

~ ~ .

Поскольку две последние строки пропорциональны, одну из них можно удалить, тогда исходная система примет вид:

.

Решая эту систему, находим . Положим , тогда получим собственный вектор , соответствующий собственному значению λ1=3.

2) При λ2 = 6 имеем систему уравнений

.

Составим матрицу из коэффициентов системы и с помощью элементарных преобразований приведем её к следующему виду

~ ~ .

Последнюю строку матрицы можно удалить, а вторую строку разделить на (–4), тогда придём к системе двух уравнений с тремя неизвестными, одно из которых может быть выбрано произвольно:

.

Пусть , тогда , . Собственный вектор .

3) Точно так же находим собственный вектор , соответствующий собственному значению λ3 = –2.

Следует заметить, что матрица преобразования А в данном примере является симметрической, так как её элементы, расположенные над главной и под главной диагональю, одинаковы. В этом случае, в чём легко убедиться, собственные векторы взаимно ортогональны:

,

,

.

Ответ: λ1 = 3, λ2 = 6, λ3 = –2, , , .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: