Выявление и оценивание погрешностей МВИ

Выявление и оценивание составляющих погрешности измерения физической величины при разработке МВИ позволят совершенствовать МВИ (повышать точность измерений), если это реализуемо. Систематические погрешности можно компенсировать или исключить иными методами, а поскольку исключение случайных составляющих погрешности принципиально невозможно, при необходимости изменяют МВИ, избавляясь от источников таких погрешностей или заменяя источники погрешностей на другие, повышенной точности.

До реализации МВИ возможно только аналитическое оценивание составляющих погрешности измерения на основе функционального анализа методики выполнения измерений. После окончания разработки МВИ при её реализации можно применить экспериментальные методы оценивания интегральной погрешности измерения. Однако если погрешность измерения будет содержать заметные систематические составляющие, поиск их источников также потребует проведения функционального анализа МВИ.

Функциональный анализ методики выполнения измерений может проводиться на двух уровнях:

1. Качественный (выявление возможных причин возникновения погрешностей, оценка их предполагаемого характера; выявление аргументов систематических составляющих погрешностей и предполагаемых видов функции; априорная оценка вида распределения случайных составляющих).

2. Количественный (проводится после качественного и включает оценку порядка, предельных или конкретных значений – в зависимости от вида погрешности и полноты имеющейся информации).

Определение значения интегральной погрешности измерений по составляющим базируется на объединении всех значимых составляющих. Его можно использовать для оценки интегральных погрешностей от выбранного источника или от нескольких источников, либо для оценки погрешности измерения в целом.

Для расчетов погрешностей строят аналитические модели. Моделирование обычно применяют для расчета составляющих инструментальных и методических погрешностей, а также погрешностей из-за несоответствия условий измерений нормальным. Возможно также моделирование некоторых субъективных составляющих погрешности.

Так для оценки погрешностей отсчитывания можно построить модель образования погрешности из-за параллакса, а также модели округления результата. Из модели округления отсчета показаний аналогового прибора при наихудшем положении указателя (точно посредине деления) следует, что погрешность округления составит половину цены деления шкалы j. Следовательно, погрешность отсчитывания с округлением составит не более 0,5j. При интерполировании дольной части деления «на глаз» погрешность будет еще меньше, но в последнем случае более строгая аналитическая оценка невозможна, поэтому прибегают к экспериментальным методам или к заимствованию данныхиз информационных источников. При хороших условиях (эргономические свойства системы шкала-указатель, условия отсчитывания, навык оператора…) погрешность интерполирования не превышает (0,1…0,2)j.

Возможные уровни полноты оценки погрешностей определяются в ходе исследований на следующих этапах:

· обоснование наличия погрешности от некоторого источника;

· оценка характера погрешности;

· получение оценок порядка погрешностей и/или оценок конкретных числовых значений.

Задача первого этапа – определение погрешностей, происходящих от любого источника. Например, если измерения осуществляются методом сравнения с мерой, в инструментальные погрешности входят погрешности прибора и погрешности используемых мер или ансамблей мер. Возможно ли возникновение значимых инструментальных составляющих погрешности от вспомогательных устройств, таких как присоединительные провода электрических приборов и др. необходимо выяснить в ходе анализа.

При анализе условий измерения выявляют влияющие величины. Наряду с очевидными воздействиями на объект и/или средства измерений (влияние температуры при линейных измерениях, влияние электромагнитных полей на электрические средства измерений) приходится оценивать более тонкие воздействия, например, влияние атмосферного давления и влажности воздуха на емкостные средства измерений.

Обязательными элементами анализа являются также исследование возможности возникновения методических погрешностей из-за идеализации измерительного преобразования или/и объекта измерений, а также выявление составляющих субъективной погрешности.

Второй этап (оценка характера погрешности) может основываться как на аналитическом подходе, так и на экспериментальных данных. Глубина исследований здесь также может быть различной, например, можно только констатировать систематический характер выявленной составляющей погрешности или дополнить описание более конкретными данными, например: «постоянная систематическая погрешность используемой меры», «прогрессирующая систематическая погрешность из-за повышения температуры в цехе», «периодическая систематическая погрешность отсчетного устройства прибора из-за эксцентриситета указателя и шкалы». Для случайной погрешности кроме констатации ее стохастического характера важно определить вид распределения (нормальное, равновероятное, трапециевидное и т.д.).

На третьем этапе определяют числовые оценки значения (значений) погрешности. Здесь можно основываться как на аналитическом подходе, так и на экспериментальных данных. При недостаточной информации приходится останавливаться на оценке порядка или границ рассматриваемой погрешности. Более полная информация позволяет получать оценки конкретных значений систематической составляющей, функцию ее изменения, необходимые вероятностные характеристики случайной составляющей погрешности.

Для оценки погрешностей измерений можно применить три группы экспериментальных методов:

· измерение известной физической величины;

· повторное измерение той же физической величины с заведомо более высокой точностью;

· анализ массивов результатов многократных измерений одной и той же физической величины.

Первую группу экспериментальных методов чаще всего реализуют путем измерения физической величины, воспроизводимой «точной» мерой, вторую – с помощью «точных» измерений той же величины с использованием новой методики выполнения измерений. В любом из этих случаев получают количественную оценку погрешности за счет использования заведомо более точной информации об измеряемой физической величине. Различие между методами заключается в том, что первый обеспечивает необходимую точность информации за счет аттестованного размера физической величины, воспроизводимого мерой (предварительная аттестация), а при втором аттестуется сама измеряемая физическая величина (аттестация измеряемого объекта в ходе исследования).

Определение значения погрешности по результатам измерения точной меры возможно только в том случае, когда погрешность измеряемой «точной» меры D м пренебрежимо мала по сравнению с искомой погрешностью D.

Искомая погрешность D в этом случае определяется из зависимости:

D = X – Хм,

где Х – результат измерения меры,

Хм – «точное» значение меры (номинальное значение меры или значение меры с поправкой по аттестату), для которого можно записать

D м << D.

Пример применения такого метода в быту – использование точных гирь для проверки домашних весов.

Метод определения значения погрешности по результатам повторного измерения той же физической величиныоснован на том, что погрешность измерения при использовании «точной» МВИ (D МВИ2) пренебрежимо мала по сравнению с искомой погрешностью D, то есть

D МВИ2 << D.

Искомую погрешность в этом случае определяют из зависимости:

D = ХМВИ1 – ХМВИ2,

где ХМВИ1 – результат измерения при использовании исследуемой МВИ,

ХМВИ2 – результат измерения при использовании «точной» МВИ.

Результаты измерений отрезков времени полученные с использованием более точной МВИ в виде сигналов точного времени передают по радио каждый час. Точность гарантирована – сигналы получают с использованием вторичного эталона времени и частоты, с помощью которого отрезки времени измеряют заведомо точнее, чем любыми бытовыми приборами времени.

Специфическая группа экспериментальных методов оценивания погрешностей измерений основана на анализе массивов результатов многократных измеренийодной и той же физической величины. В этих методах можно использовать математическую обработку серий измерений и/или графо-аналитические исследования точечных диаграмм.

Математическая обработка массива результатов измерений может включатьвыявление и оценку характеристик переменной систематической составляющей, а также статистическую обработку результатов для оценки случайной составляющей погрешности (после исключения систематической составляющей). При этом результаты с грубыми погрешностями следует исключать из рассмотрения, поскольку они могут существенно исказить итоговые оценки результатов измерений.

Для получения достоверных оценок случайной составляющей погрешности необходимо набрать представительный массив случайных величин (результатов наблюдений при равнорассеянных измерениях) и произвести его статистическую обработку, причем корректность оценки зависит от того, насколько тщательно были исключены систематические погрешности. Результаты получают при многократном воспроизведении измерительного эксперимента в некоторых фиксированных условиях. Здесь под «условиями» подразумеваются не только собственно условия измерений (влияющие величины) в рабочей зоне, но и использование одной и той же методики выполнения измерений с применением одних и тех же средств измерений одним и тем же оператором. Возможное изменение условий многократных измерений не должно приводить к появлению систематической погрешности или нарушению равнорассеянности результатов.

При статистической обработке результатов многократных измерений можно получать такие характеристики, как средние значения серий измерений и значения оценок среднего квадратического отклонения. При наличии нескольких серий измерений можно сравнивать оценки, полученные для разных серий. Можно проводить сравнение двух и более серий результатов измерений, полученных с некоторым разрывом во времени, серий выполненных разными операторами, либо отличающихся использованием разных экземпляров СИ или разных МВИ.

Анализ точечных диаграмм является сравнительно простым и достаточно эффективным средством, позволяющим не только выявлять и оценивать переменные систематические и случайные составляющие погрешности измерений, но и отбраковывать результаты с явно выраженными грубыми погрешностями. Точечную диаграмму строят в координатах «номер измерения n – результат измерения X».

Следует помнить, что точечная диаграмма не является графиком результатов измерений, поскольку по оси абсцисс не откладывают аргумент какой-либо функции. Любая проявляющаяся на точечной диаграмме тенденция изменения результатов свидетельствует только об изменении во времени аргументов, вызывающих переменные систематические погрешности измерений. Проведение аппроксимирующей линии и оценка тенденции осуществляются на основе предположения озакономерном изменении аргументаот измерения к измерению, который по точечной диаграмме выявить невозможно.

Анализ точечных диаграмм позволяет выявлять и оценивать переменные систематические и случайные составляющие погрешности измерений и отбраковывать результаты с явно выраженными грубыми погрешностями.

Идеальная точечная диаграмма серии измерений должна представлять собой ряд точек, располагающихся на одинаковой высоте, которая соответствует истинному значению измеряемой физической величины Q (рисунок 6.1).

Постоянная систематическая погрешность вызывает только эквидистантное смещение экспериментальной тенденции относительно идеальной, а характер тенденции при этом не меняется. Поэтому делать какие-либо выводы о постоянной составляющей погрешности в серии измерений по точечной диаграмме нельзя. Можно только высказать предположение о наличии такой погрешности на основании постулата об обязательном присутствии в погрешности измерения систематической составляющей, которая в лучшем случае будет пренебрежимо мала по сравнению со случайной составляющей.

Тенденция изменения результатов измерений в серии может быть вызвана только наличием систематической переменной погрешности, следовательно, при наличии точечной диаграммы появляется возможность качественного описания такой погрешности, которое может быть дополнено некоторыми количественными (числовыми) оценками. Наличие значимых случайных составляющих погрешности в каждом из наблюдений затрудняет анализ диаграммы, однако достаточно продолжительные серии, как правило, позволяют выявить тенденции, если они имеют место.

Возможные тенденции изменения результатов в сериях измерений, проявляющиеся на точечных диаграммах, представлены на рисунке 6.2 (6.2 а – наклон, 6.2 б – мода, 6.2 в – гармонические изменения аппроксимирующей линии). Наличие закономерностей изменения результатов свидетельствуют о присутствии в серии переменных систематических погрешностей. Характер таких погрешностей в первом приближении можно оценить по виду наблюдаемой тенденции изменения результатов (монотонно возрастающие или убывающие, переменные с одним или несколькими экстремумами…), для оформления которой используют аппроксимирующие линии. Аппроксимацию, как правило, осуществляют простейшими линиями: прямой, участком дуги окружности или параболы, для периодических изменений – чаще всего синусоидой.


Примерами серий с очевидными тенденциями можно считать точечные диаграммы на рисунке 6.2. На рисунке 6.2 а просматривается тенденция увеличения результатов, которую проще всего аппроксимировать прямой линией. Тенденция на рисунке 6.2 б – немонотонная, результаты сначала увеличиваются, затем после достижения максимума уменьшаются, что позволяет предложить аппроксимацию дугой окружности или участком синусоиды. Такое изменение результатов может свидетельствовать о наличии периодической составляющей, однако для уверенного заключения об этом экспериментальных данных явно недостаточно. Зато на рисунке 6.2 в очевидно просматривается периодическая тенденция, которую можно аппроксимировать косинусоидой в 3/4 периода.

Отклонения результатов от аппроксимирующей линии могут рассматриваться как случайные составляющие погрешности измерения. Значения отклонений определяют в направлении оси ординат точечной диаграммы с учетом масштаба. Сумма модулей двух максимальных отклонений (верхнего и нижнего) составляет размах случайных отклонений, который чаще всего используют для ориентировочной оценки случайной составляющей погрешности измерения.

Проведение на точечной диаграмме аппроксимирующей линии и оценка тенденции и отклонений от нее осуществляются на основе предположения (допущения) о равномерном или ином закономерном изменении аргумента от измерения к измерению, что приводит к соответствующему закономерному изменению результатов. Такое допущение накладывает определенные ограничения на методику проведения серии многократных измерений одной и той же физической величины. Обязательными условиями являются неизменность самой измеряемой физической величины и методики выполнения ее измерений. Наблюдения следует проводить через примерно одинаковые промежутки времени без перерывов для сохранения постоянства условий в широком смысле, включая не только поддержание влияющих величин в нормальной или рабочей области значений, но и психофизиологическое состояние оператора. Серию не следует продолжать до явного утомления оператора, а его замена может привести к фактическому получению второй серии.

Многократные измерения одной и той же физической величины с использованием одной методики выполнения измерений позволяют численно оценить сходимость измерений внутри серии. Высокая сходимость результатов отражается на диаграмме отсутствием тенденций изменения результатов и малыми случайными отклонениями от аппроксимирующей линии.

В качестве первичной оценки погрешности измерений в серии, включающей систематическую и случайную составляющие, может быть использован размах результатов многократных измерений (рисунок 6.3)

R′ = Xmax – Xmin.

 
 


Чтобы получить геометрическое представление размаха R′ результатов измерений в серии, следует провести две прямые, параллельные оси абсцисс, через самую верхнюю и самую нижнюю точки точечной диаграммы.

Размах R' включает в себя как рассеяние результатов из-за случайной составляющей погрешности измерений, так и переменную систематическую составляющую погрешности (при ее наличии), вызывающую закономерное изменение результатов во времени. Для того чтобы можно было отдельно рассматривать влияние на измерения детерминированных и стохастических воздействий, из результатов измерений исключают систематические составляющие погрешностей. Такую операцию называют «исправлением результатов измерений», а результаты измерений после исключения из них систематических погрешностей считают «исправленными». В соответствии со сказанным, следует различать размахи «неисправленных» R' и «исправленных» R результатов измерений.

Полное исправление результатов требует абсолютной строгости в определении систематических составляющих погрешностей каждого из результатов измерений, что невозможно осуществить с помощью точечной диаграммы. Даже если принятые при ее построении допущения соответствуют реальной ситуации, постоянная составляющая систематических погрешностей всегда остается невыявленной. Однако с использованием точечной диаграммы можно осуществить «частичное исправление» результатов измерений. Для этого на экспериментальные точки накладывают аппроксимирующую линию, которая отражает изменения результатов из-за систематических погрешностей. Если считать, что отклонения результатов от построенной тенденции их изменения вызваны собственно случайными составляющими погрешности, можно перейти к их количественной оценке.

В этом случае делается допущение, что аппроксимирующая линия отражает систематические изменения результатов (представляет собой линию «текущего среднего значения»), а отклонения от неё рассматривают как случайные составляющие погрешности каждого из наблюдений. Числовые оценки отклонений определяют по точечной диаграмме с учетом ее масштаба. Предложенный прием позволяет разделить и наглядно представить на диаграмме систематические и случайные составляющие погрешности измерений.

Для оценки размаха R «исправленных» результатов измерений, который отражает рассеяние результатов из-за собственно случайной составляющей погрешности, с помощью диаграммы исключают влияние переменной систематической составляющей. Размах R (рисунок 6.4) определяют как расстояние вдоль оси ординат между двумя линиями, проведенными эквидистантно аппроксимирующей через две наиболее удаленные от нее точки, а значение размаха рассчитывают с учетом масштаба точечной диаграммы.


Описанное «исправление» результатов измерений названо частичным, поскольку неизвестное (и потому отсутствующее на диаграмме) истинное значение измеряемой величины искусственно заменяется некоторым «текущим средним значением», которое воспроизводится на диаграмме аппроксимирующей линией, учитывающей влияние переменной систематической погрешности.

Точечная диаграмма результатов многократных измерений физической величины не дает представления о значении постоянной систематической погрешности. Диаграмма одной серии не содержит достаточной информации для такого анализа из-за отсутствия «опорного значения», которым можно было бы заменить истинное.

Анализ результатов измерений каждой серии обычно начинают с выявления тенденции изменения результатов измерений и ее качественной оценки. Затем на диаграмму наносят аппроксимирующую линию, соответствующую характеру изменения результатов серии. При анализе диаграмм могут встретиться три варианта:

· серия без тенденции изменения результатов;

· серия без явно выраженной тенденции изменения результатов;

· серия c явной тенденцией изменения результатов.

Первый вариант говорит об отсутствии в серии переменной систематической погрешности, аппроксимацию осуществляют прямой линией, параллельной оси абсцисс. Можно говорить о наличии в серии постоянной систематической погрешности, но её значение оценить невозможно (она может быть значимой либо пренебрежимо малой). При отсутствии в серии явно выраженной тенденции изменения результатов как и в первом варианте серию аппроксимируют прямой линией, параллельной оси абсцисс.

Для аппроксимации диаграмм третьего варианта по возможности выбирают наклонные прямые или простейшие кривые линии (параболы, дуги окружности, синусоиды). При любой аппроксимации обязательно будут наблюдаться несовпадение результатов и аппроксимирующей линии. Отклонения могут быть вызваны объективными причинами (наличие случайных погрешностей в результатах измерений), или несоответствующей аппроксимацией результатов (неправильный характер и расположение аппроксимирующей линии). Успешность выбора аппроксимирующей зависимости и ее наложения на экспериментальные точки зависит от числа наблюдений и опыта исследователя. Аппроксимирующие линии выбранного вида можно строить с использованием математических методов (например, метода наименьших квадратов), но точность и достоверность результатов при этом практически не повышается. Поскольку анализ точечных диаграмм основан на допущениях, не обеспечивающих высокий уровень строгости, незначительные погрешности аппроксимации, как правило, имеют второй порядок малости и «погрешности оценки погрешностей» не приводят к существенному искажению результатов исследования.

После проведения аппроксимирующей линии визуально оценивают экстремальные отклонения от этой линии. При наличии одной или нескольких точек, явно выпадающих из общей тенденции, значения, соответствующие этим точкам, оценивают как содержащие грубые погрешности и цензурируют. Результаты, подозрительные на наличие промахов, но вызывающие сомнения, оставляют для последующего статистического отбраковывания, которое выходит за пределы анализа точечных диаграмм.

Далее через самые удаленные от аппроксимирующей линии точки (максимальные отклонения «в плюс» и «в минус») проводят эквидистанты. Расстояние между ними вдоль оси ординат в масштабе точечной диаграммы равно размаху отклонений R, и рассматривается как одна из характеристик случайной составляющей погрешности.

Точечная диаграмма с аппроксимирующей линией и эквидистантами позволяют количественно оценить не только размахи отклонений R' (общий размах результатов измерений) и R (размах частично исправленных результатов измерений), но и другие параметры и характеристики точечной диаграммы, включая изменение прогрессирующей составляющей в серии результатов (приращение а в пределах серии), амплитуду А или удвоенную амплитуду 2А периодической составляющей, а также ее ориентировочный период Т в числах (номерах наблюдений).

Анализ точечных диаграмм позволяет делать логически обоснованные предположения об изменении условий измерений в широком понимании этого термина. Например, наличие прогрессирующей тенденции в серии измерений может быть связано с закономерным изменением одной или нескольких влияющих величин, накапливающейся усталостью оператора, накапливающимся воздействием чувствительного элемента на объект измерений. Предположения об износе элементов измерительной цепи средства измерений, как правило, неправомочны, поскольку существенный износ деталей при проведении нескольких десятков или даже сотен измерений может наблюдаться только у средств измерений особо неудачной конструкции.

Ниже приведены точечные диаграммы (рисунок 6.5), анализ каждой из проведенных серий измерений и примеры гипотетических высказываний о возможных причинах характерных особенностей результатов в сериях.

Точечная диаграмма на рисунке 6.5 а имеет явно выраженную тенденцию монотонного убывания значений, что свидетельствует о наличии в серии прогрессирующей погрешности (тенденция изменения отражена аппроксимирующей прямой). Результат nj цензурируется как результат с грубой погрешностью – он явно выпадает из общей тенденции, несмотря на то, что его значение близко к значениям в начале серии. Возможные причины появления этого результата – ошибка оператора (промах при манипулировании или при отсчитывании) либо сбой в работе прибора.

 
 


Особенностью точечной диаграммы на рисунке 6.5 б является очевидное наличие двух участков 1 и 2, каждый из которых не имеет явно выраженной тенденции изменения результатов. Резкое изменение результатов между участками 1 и 2 свидетельствуют о фактическом изменении условий измерений в широком смысле этого термина. Скачкообразное изменение результатов позволяет высказать несколько предположений: возможно, был перерыв в работе, за время которого изменились условия измерений (одна или несколько влияющих величин), могло произойти мгновенное изменение настройки (сбой настройки) прибора. В качестве гипотезы можно также рассмотреть возможную «подмену» измеряемой физической величины, то есть фактический переход от одной из номинально одинаковых физических величин к другой, например, из-за незамеченного изменения контрольного сечения (контрольной точки).

Точечная диаграмма на рисунке 6.5 в имеет явно выраженную тенденцию немонотонного изменения значений, что может свидетельствовать о наличии в серии периодической (циклической) погрешности. Возможные тенденции изменения результатов отражены двумя аппроксимирующими линиями – сплошной и штриховой, из которых видно, что предполагаемые тенденции примерно вдвое различаются по периоду и амплитудам. Поскольку для достоверных заключений о наличии периодической погрешности, ее амплитуде и предполагаемом периоде наличной информации недостаточно, по возможности следует продолжить серию измерений, при невозможности – высказать предположения, четко оговаривая принятые допущения.

На рисунке 6.5 г представлены две аппроксимирующие линии – прямая (сплошная линия) и кривая (штриховая линия). Кривая может быть признана более удачной аппроксимацией, поскольку отклонения от нее в целом меньше, чем от аппроксимирующей прямой.

При выполнении нескольких серий многократных измерений одной и той же физической величины с использованием разных методик выполнения измерений весьма эффективно их сопоставление с помощью точечных диаграмм, построенных в одном масштабе. Анализ каждой из серий измерений включает оценку отдельно по каждой серии тенденций изменения результатов измерений и оценки размахов Ri.

Сравнительный анализ результатов нескольких серий измерений одной и той же физической величины позволяет оценить воспроизводимость измерений. Характеристиками воспроизводимости измерений в двух сериях могут быть значения размахов и расхождение средних значений при практическом отсутствии тенденции изменения результатов, поскольку переменные систематические погрешности обязательно приведут к низкой сходимости результатов в серии и воспроизводимости серий. В случае неравноточных МВИ можно получить также предварительную оценку систематических постоянных погрешностей для менее точной серии. Для оценки систематических постоянных погрешностей серию сравнивают с более точной «опорной» серией, если в ней не наблюдаются явные тенденции изменения результатов.

Все характеристики особенно хорошо видны на точечной диаграмме с двумя сериями измерений, оформленными в одном масштабе. Примеры таких «парных» точечных диаграмм с элементами анализа приведены на рисунках 6.6 а – 6.6 з.

Приведем примеры краткого сравнительного анализа двойных диаграмм, представленных на рисунке 6.6.

В тексте использованы уже встречавшиеся обозначения размахов «исправленных результатов» (R), средних значений серии наблюдений (X) и истинного значения измеряемой физической величины (Q).

Значения размахов «неисправленных результатов», средние значения каждой из серий и истинные значения измеряемой физической величины на точечных диаграммах не показаны, чтобы не загромождать рисунок. Анализ каждой из диаграмм не проводится, поскольку примеры такого анализа были представлены ранее.

На диаграмме 6.6 а представлены две серии без переменных систематических погрешностей (в обеих сериях отсутствуют тенденции изменения результатов), которые можно считать практически равнорассеянными, (поскольку R1 ≈ R2), но неравноточными (поскольку Х1 ≠ Х2). Неравенство средних значений свидетельствует о том, что либо одна, либо обе имеют постоянные систематические составляющие, значимые по сравнению со случайными составляющими (Х1 – Х2 > R1 ≈ R2).


а б

в г

Д е

Ж з

Серии на диаграмме 6.6 б без переменных систематических погрешностей, неравнорассеянные (поскольку R1 ≠ R2) и неравноточные (в них кроме того, что R1 ≠ R2, еще и Х1 ≠ Х2), причем либо в одной, либо в обеих сериях присутствуют постоянные систематические погрешности (если, например, считать Х1 ≈ Q, то Х2 ≠ Q, поскольку Х1 ≠ Х2).

На диаграмме 6.6 в показаны серии без переменных систематических погрешностей неравноточные и неравнорассеянные (R1 ≠ R2), причем обе имеют практически одинаковые постоянные систематические составляющие (поскольку Х1 ≈ Х2).

На диаграмме 6.6 г представлены две серии без переменных систематических погрешностей, неравнорассеянные (поскольку R1 ≠ R2), причем более грубая серия имеет два характерных участка с различающимися размахами (видно, что R'2 ≠ R"2). Серии неравноточные, поскольку кроме неравенства случайных погрешностей еще и Х1 ≠ Х2, следовательно различны и постоянные систематические погрешности). Одна из серий, либо обе имеют постоянные систематические составляющие (поскольку Х1 ≠ Х2).

Первая серия на диаграмме 6.6 д не имеет переменных систематических погрешностей, у второй – явно выраженная тенденция изменения результатов (значения монотонно убывают, что свидетельствует о прогрессирующей систематической составляющей). Серии неравноточные (R'1 ≠ R'2), но можно графически или аналитически привести их к практически равнорассеянным (поскольку R1 ≈ R2), для чего необходимо исключить из рассмотрения переменную систематическую составляющую второй серии.

На диаграмме 6.6 е представлены две серии очевидно неравноточные и неравнорассеянные. Первая серия не имеет переменных систематических погрешностей, у второй явно выраженная прогрессирующая тенденция изменения результатов (значения монотонно возрастают, что свидетельствует о наличии прогрессирующей систематической составляющей).

Две явно неравноточные и неравнорассеянные серии на диаграмме 6.6 ж имеют примерно одинаковые прогрессирующие тенденции изменения результатов (однотипные возрастающие значения свидетельствуют о наличии практически одинаковых прогрессирующих систематических составляющих).

На последней диаграмме 6.6 з представлены две явно неравноточные и неравнорассеянные серии, одна из которых имеет немонотонную тенденцию изменения результатов (вначале возрастающие, а затем убывающие значения свидетельствуют о наличии систематической составляющей, предположительно циклического характера). Для достоверных заключений о наличии во второй серии периодической погрешности, ее амплитуде и предполагаемом периоде наличной информации недостаточно.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow