И защиты

При выборе аппаратов управления для установок до 1 кВ следует учитывать режимы их работы. Типы, технические данные аппаратов управления представлены в [6, 9]. Категории применения аппаратов в зависимости от рода тока и режимы работы (области использования) представлены в [9].

В качестве аппаратов защиты применяются плавкие предохранители или автоматические воздушные выключатели с встроенными тепловыми (для защиты от перегрузок) и электромагнитными (для защиты от токов короткого замыкания) реле.

Выбор автоматов производится:

– по напряжению установки U уст £ U н;

– по роду тока и его значению I р £ I н;

– по коммутационной способности I к £ I откл,

где U уст – напряжение на установке; U н – номинальное напряжение автомата; I р – рабочий ток установки; I н – номинальный ток автомата; I к – ток короткого замыкания.

Номинальный ток теплового электромагнитного или комбинированного расцепителя автоматического выключателя выбирается только по расчетному току линии I т ³ I дл.

Ток срабатывания (отсечки) электромагнитного расцепителя или комбинированного расцепителя I ср.эл проверяется по максимальному кратковременному пиковому току I ср.эл³ I пик К.

Для автоматических выключателей с I н £ 100 А коэффициент К ³ 1,4, а с I н ³ 100 А К ³ 1,25. Для одиночных двигателей пиковый ток равен пусковому току двигателя.

Выбор предохранителей производится:

– по напряжению U уст £ U н;

– по условиям перегрева I н ³ I р;

– по току отключения I к £ I н.откл.

Токи плавких вставок предохранителей для линий с электродвигателями выбираются согласно условиям:

– при нормальном пуске, когда время пуска не превышает 5 с,

; (7.1)

– при тяжелом пуске, когда время пуска более 5 с (например, вентиляторы с колесом большого диаметра),

. (7.2)

Для защиты линии с несколькими двигателями

, (7.3)

где I р – расчетный ток группы двигателей; I нб – ток наибольшего в группе двигателя; К – кратность пускового тока двигателя.

В [9] приводятся рекомендации по выбору пусковой и защитной аппаратуры (предохранители, выключатели, магнитные пускатели) на ответвлениях к асинхронным двигателям.

В качестве примера типовой релейной системы автоматического управления на рис. 7.1 представлена схема пуска, остановки и реверсирования асинхронного двигателя с короткозамкнутым ротором при помощи магнитного пускателя [3].

Рис. 7.1. Схема пуска, остановки и реверсирования асинхронного двигателя:

КМ 1, КМ 2 – контакторы; SB 2, SB 3 – кнопки управления, подающие команды

на включение двигателя для вращения в условных направлениях «Вперед»

и «Назад»; SB 1 – кнопка «Стоп», останавливающая двигатель

Магнитные пускатели широко используются для двигателей переменного тока до 75 кВт, работающих в основном в продолжительных или повторно-кратковременных режимах. Магнитным пускателем осуществляют дистанционное управление, а также тепловую (FR 1, FR 2) защиту двигателей. В схеме предусмотрена максимально-токовая мгновенная защита FU 1- FU 5. Если требуется пускать и останавливать двигатель, то устанавливается нереверсивный магнитный пускатель.

Выбор пусковой и защитной аппаратуры к асинхронным двигателям при напряжении сети 380 В можно производить по [9].

Схемы автоматического пуска и остановки синхронных двигателей низкого и высокого напряжений приведены в [3, 18]. На синхронных двигателях обязательно предусматриваются те же защиты, что и на асинхронных. Кроме того, они должны иметь защиту от асинхронного режима, дифференцированную защиту – от внутренних повреждений в обмотках двигателя; защиту от обрывов в роторной цепи; осуществлять контроль продолжительности пуска. На синхронных двигателях обязательно предусматриваются устройства автоматического регулирования возбуждения.

На рис. 7.2, а представлена типовая схема управления возбуждением СД в функции скорости [3]. Контактор КМ 2подает питание на обмотку возбуждения СД, и он управляется реле скорости KR. Катушка этого реле связана с частью разрядного резистора R р через диод VD. При включении контактора КМ 1 (его цепи управления не показаны) в СД образуется вращающееся магнитное поле. Это поле наводит ЭДС в обмотке возбуждения неподвижного ротора. Под действием ЭДС в цепи катушки реле KR и диода VD появится выпрямленный ток, реле включается и цепь питания контактора КМ 2 размыкается. Происходит асинхронный пуск СД с закороченной на разрядный резистор R р обмоткой возбуждения. С ростом скорости ротора его ЭДС и ток реле снижаются.

Рис. 7.2. Релейно-контакторные схемы пуска синхронных двигателей

При подсинхронной скорости ток катушки реле KR становится меньше тока отпускания, и оно отключается и вызывает включение контактора КМ 2. Напряжение U в подается на обмотку возбуждения, и происходит процесс синхронизации СД.

На рис. 7.2, б представлена типовая схема управления возбуждением СД в функции тока. При подключении СД к сети контактором КМ 1в обмотке статора возникает бросок пускового тока, который приводит к срабатыванию реле тока КА. Контакт этого реле, замыкая цепь питания реле времени КТ,вызывает отключение контактора возбуждения КМ 2. Как и в предыдущем случае, происходит асинхронный пуск СД с закороченной на разрядный резистор R р обмоткой возбуждения. При подсинхронной скорости ток в обмотке статора снижается, реле тока КА отключается, катушка реле времени КТ теряет питание. С определенной выдержкой времени цепь питания контактора КМ 2замыкается, напряжение U в подается на обмотку возбуждения, и происходит процесс синхронизации СД.

К устройствам сетевой автоматики относятся устройства автоматического повторного включения (AПB), автоматического включения резервного питания и оборудования (АВР), автоматической разгрузки по частоте и по току (АЧР и АРТ).

В сетях напряжением выше 1000 В применяются масляные или воздушные выключатели с дистанционным пружинным или электромагнитным приводом, позволяющим осуществлять автоматическое включение и отключение, в том числе АПВ и АВР.

В сетях напряжением до 1000 В для автоматизации применяются воздушные автоматические выключатели (автоматы) с электродвигательным, рычажным или электромагнитным приводом.

В устройствах сетевой автоматики в основном применяются релейные схемы, выполняемые в виде комплектных устройств заводского изготовления или в виде набора отдельных реле.

Источниками оперативного тока могут служить трансформаторы тока или напряжения, специальные трансформаторы для цепей управления и защиты, силовые трансформаторы. Источниками оперативного постоянного тока являются аккумуляторные батареи, блоки питания и выпрямительные устройства.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: