Событие свершается в момент, когда предшествующие ему работы выполнены. Т.к. может быть несколько путей, предшествующих данному событию, то раннее время свершения события i – t
(i) – определится продолжительностью максимального пути, предшествующего событию, т.е.
t
(i)= t[L
(i)]. (1)
Cледовательно, чтобы найти раннее время свершения события, нужно знать критический путь ориентированного подграфа, состоящего из множества путей, предшествующих данному событию (1).
Как найти время позднего свершения события i: t
(i)?
Каждое событие должно свершаться в такой срок, чтобы осталось достаточно времени для выполнения работ, следующих за этим событием.
Таким путем будет тот последующий, который имеет максимальную продолжительность L
(i). Самый поздний из допустимых сроков свершения события в сумме с продолжительностью выполнения последующих работ не должен превышать длины критического пути: t
(i)+ t[L
(i)]= t
. Отсюда:
t
(i) = t
- t[L
(i)]. (2) т.е. поздний срок свершения события вычисляется как разность между продолжительностью критического пути и продолжительностью максимального из последующих за событием i путей (2).
Т.к. при вычислении критического пути методом динамического программирования у каждой вершины графа стоит максимальное время, необходимое для выполнения работ, следующих за этим событием, то расчет позднего времени свершения события не представляет труда.
Очевидно, для событий, лежащих на критическом пути, t
(i)= t
(i).
Зная ранние и поздние сроки свершения событий сетевого графика, легко выяснить резерв времени каждого из них. Разница между наиболее поздним и наиболее ранним из возможных сроков называется резервом времени этого события, т.е.
R(i)= t
(i)- t
(i) (3)
Резерв времени события i показывает максимальное допустимое время, на которое можно отодвинуть момент его свершения, не вызывая увеличение критического пути. События критического пути резерва времени не имеют.
Учитывая, что t[L
(i)]+ t[L
(i)]=мах t[L(i)] - есть продолжительность пути максимальной длины, проходящего через событие, получим
R(i)= t
- мах t[L(i)]= R
[мах L(i)] (4)
Отсюда резерв времени любого события i равен полному резерву времени максимального пути, проходящего через это событие (4).
6.4 Графический метод расчета t
(i), t
(i) и R(i)
На практике получил широкое применение четырехсекторный способ расчета ранних и поздних сроков свершения события. При этом способе кружок сетевого графика, обозначающий событие, делится на 4 части (сектора) (см. рис.9).

рис.9
Для получения применяют метод динамического программирования для расчета критического пути от нач.пути к завершающему. Чтобы получить t[L
(i)] для расчета t
(i)= t
- t[L
(i)], берут тот же метод от завершающего события к начальному.