При питании однофазной обмотки статора переменным током возникает пульсирующее магнитное поле, которое можно представить двумя круговыми полями Фпр и Фоб, вращающимися в разные стороны (рис.2.1). Каждое из этих полей индуцирует в обмотке ротора ЭДС и токи. Токи ротора, взаимодействуя с соответствующим полем статора, создают вращающие моменты (М1 и М2). При неподвижном роторе эти моменты совершенно одинаковы, поэтому результирующий момент микродвигателя равен 0.

Механическую характеристику однофазного двигателя можно получить сложением вращающих моментов прямого (М1) и обратного (М2) полей (рис.2.2). Анализ этой характеристики позволяет сделать следующие выводы:
· Однофазный двигатель не имеет собственного пускового момента. В этом его характерная особенность и главный недостаток.
· Двигатель не имеет определенного направления вращения. Оно зависит от первичного толчка.
· Для однофазного двигателя не возможен режим электромагнитного тормоза (при sкр < 1).
· При одном и том же нагрузочном моменте, что и у симметричного трехфазного или двухфазного двигателя, однофазный будет иметь большее скольжение, следовательно, большие потери в роторе и меньший КПД.
· Перегрузочная способность однофазного двигателя зависит от активного сопротивления ротора. В последнем легко убедиться, рассматривая рис.2.3, где приведены механические характеристики двух двигателей с sкр = 0,25 (а) и sкр = 0,5 (б).

Рис.2.3. Зависимость максимального момента однофазного асинхронного двигателя от активного сопротивления ротора
Итак, при пуске однофазного двигателя (s = 1) в нем возникает пульсирующее магнитное поле. Но если привести его во вращение, поле станет эллиптическим. Объясняется это следующим образом.
При работе двигателя с небольшим скольжением, например s= 0,1, частота тока в роторе от прямого поля статора близка к нулю (при f1 = 50 Гц fP.1 = f1·s = 5 Гц), а частота тока от обратного поля – близка к двойной частоте сети (fP.2 = f1·(2 – s) = 95 Гц).

Поскольку индуктивное сопротивление обмотки ротора пропорционально частоте, ток ротора (IP.2), отстает от ЭДС (EP.2), индуцированной в нем обратным полем статора (ФС.2), на угол близкий к 90о (tgYP.2 = xP.2/rP). Магнитный поток ФР.2, созданный током IP.2, находится почти в противофазе к обратному полю статора ФС.2 и в значительной мере его ослабляет.
Получается, что в двигателе имеет место прямое поле и небольшое обратное поле. Они вместе образуют одно результирующее поле – эллиптическое.
При работе двигателя в режиме холостого хода, когда скольжение близко к нулю (s ≈ 0), демпфирующее действие обратного потока ротора ФР.2 оказывается на столько сильным, что обратное поле статора ФС.2 практически пропадает и результирующее поле становится почти круговым.
Схему замещения однофазного микродвигателя получим, если в (1.24) положим UB = 0, ZB1 = ZB2. Тогда
(2.1)
Ток однофазного двигателя
(2.2)
Знаменатель выражения (2.2) является входным сопротивлением однофазного двигателя. Его можно представить (индекс А опущен) как
(2.3)
где: Zc - полное сопротивление обмотки статора; Zmр1, Zmр2 - полные сопротивления контуров намагничивания и ротора токам прямой и обратной последовательностей.
Сопротивлению Zвх (2.3) соответствует схема рис. 2.4, которая и будет схемой замещения однофазного микродвигателя.

Рис.2.4. Схемы замещения однофазного асинхронного микродвигателя
Задача 2.1. Во сколько раз (приблизительно) ток холостого хода однофазного двигателя отличается от тока холостого хода симметричного трехфазного двигателя?






