Оптическая пирометрия

Квантовая теория теплового излучения. Гипотеза и формула Планка.

Существует ряд оптических явлений, таких как равновесное тепловое излучение, фотоэффект, явление Комптона, которые нельзя объяснить на основе волновых свойств света. Эти явления можно объяснить только с позиции квантовых представлений о процессах излучения, поглощения и распространения света, который рассматривается при этом, как поток квазичастиц – фотонов.

Основы квантовых представлений о характере излучения света телами были заложены в 1900 г. немецким физиком М.Планком для объяснения законов теплового излучения. Тем самым было положено начало развитию квантовой физики как науки о строении и свойствах микрообъектов.

Тела, нагретые до высоких температур, светятся, т.е. испускают электромагнитное излучение. Электромагнитное излучение всех длин волн обуславливается колебаниями электрических зарядов, входящих в состав вещества, т.е. электронов и ионов. Вследствие значительной массы колеблющихся ионов при их колебании излучается длинноволновое электромагнитное излучение, соответствующее инфракрасному диапазону длин волн. Движение электронов, входящих в состав атомов или молекул, инициирует более коротковолновое излучение, соответствующее видимому и ультрафиолетовому излучениям. Излучение тела сопровождается потерей энергии. Для того чтобы обеспечить длительное излучение энергии, совершаемое за счет энергии теплового движения заряженных частиц вещества, необходимо пополнять убыль внутренней энергии, сообщая телу соответствующее количество теплоты. В состоянии равновесия тело излучает столько энергии, сколько поглощает ее. Тепловое излучение, как наиболее распространенный вид электромагнитного излучения в природе, является равновесным излучением. В состоянии термодинамического равновесия тело поглощает в единицу времени столько же энергии, сколько и излучает. Если оно начнет излучать в единицу времени больше энергии, чем получает ее, то температура тела начнет понижаться и уменьшится количество излучаемой телом энергии до уровня, когда, наконец, не установится равновесие. Такое равновесное состояние устойчиво, т.е. при нарушении его, равновесное состояние вновь установится.

Способность теплового излучения находиться в равновесии с излучающим телом отличает тепловое излучение от других видов излучения тел.

Равновесному излучению можно приписать температуру тела, с которым оно находится в равновесии, распространив при этом законы равновесной термодинамики на тепловое излучение. Это означает, что для равновесного теплового излучения можно определить и рассчитать внутреннюю энергию, давление, энтропию и другие термодинамические характеристики, которые не будут изменяться со временем.

Равновесное тепловое излучение однородно, то есть его плотность энергии одинакова во всех точках внутри полости, где оно заключено. Такое излучение изотропно и неполяризовано, т. е. оно содержит все возможные направления распространения и направления колебаний векторов и .

Все другие виды излучения тел являются неравновесным и и называются люминесценцией. Люминесценция может осуществляться под действием света (фотолюминесценция), проникающей радиации (радиолюминесценция, в частности, рентгенолюминесценция, катодолюминесцнеция, ионолюминесценци), при возбуждении электрическим полем (э лектролюминесценция), механических воздействиях (триболюминесценция) и химических реакциях (хемилюминесценция), в частности, при процессах, происходящих в клетках биологических объектов на молекулярном уровне (биолюминесценция). Люминесцирующие вещества называются люминофорами.

Следует отметить, что при отражении и преломлении света, когда происходит формирование вторичных световых волн в веществе, продолжительность излучения веществом происходит за время, сравнимое с периодом световых колебаний. А вот при тепловом излучении и люминесценции время излучения значительно превышает период световых колебаний.

Тепловое излучение свойственно всем телам при температуре выше 0 К. Оно содержит электромагнитные волны всевозможных частот (), однако при низких температурах тела излучают преимущественно волны инфракрасного диапазона. Поскольку тепловое излучение является равновесным, то для описания его свойств можно использовать законы термодинамики.

Если окружить излучающее тело (или несколько тел) оболочкой с идеально отражающей поверхностью (рис 1.1), удалив из оболочки воздух, то между телом (телами) и заполняющим оболочку излучением будет происходить непрерывный обмен энергией.

Если распределение энергии между телами и излучением остается неизменным для каждой длины волны, состояние системы тел и излучения будет равновесным, т.е. все тела будут иметь температуру T, равную температуре оболочки.

Рис. 1.1

Закон Кирхгофа формулируется следующим образом:

Отношение испускательной способности любого тела к его поглощательной способности не зависит от природы тела и поэтому является универсальной функцией частоты и температуры, т.е.

Поскольку поглощательная способность АЧТ , то из уравнения следует, что универсальная функция Кирхгофа является спектральной плотностью энергетической светимости абсолютно черного тела.

Закон Стефана-Больцмана:

энергетическая светимость абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры, то есть

По современным измерениям постоянная Стефана-Больцмана σ=5,6686·10-8

Закон смещения Вина: длина волны λm, на которую приходится максимум испускательной способности абсолютно черного тела, обратно пропорциональна его абсолютной температуре. Этот закон можно записать в виде

, где - постоянная Вина.

По квантовой теории Планка энергия осциллятора с собственной частотой ν может принимать лишь определенные дискретные (квантованные) значения, отличающиеся на целое число элементарных порций − квантов энергии: εν = , где

h= 6,625·10-34 Дж·с − постоянная Планка (квант действия).

В 1900 г. М.Планк впервые выдвинул гипотезу о дискретных значениях энергии осциллятора, равных целому числу квантов энергии , т.е.

, (). (1.17)

Согласно этой гипотезе Планк моделирует реальное твердое тело с помощью системы квантовых осцилляторов. Выполнив усреднение энергии осциллятора с помощью распределения Больцмана, Планк получил выражение для среднего значения энергии, приходящейся на одну колебательную степень свободы осциллятора:

. (1.18)

Подставив соотношение (1.18) в формулу Рэлея – Джинса (1.14), Планк получил формулу для излучательной способности АЧТ как функцию от частоты излучения: . (1.19)

Эта формула как функция от длины волны излучения имеет вид:

, (1.20)

именно ее чаще всего используют в экспериментальных работах.

Из формулы Планка вытекают все законы теплового излучения тел.

В области малых частот, т.е. при условии, что квант энергии во много раз меньше средней энергии осциллятора (h , формула Планка совпадает с формулой Релея—Джинса. Для доказательства этого разложим функцию eh в ряд:

eh = 1+ ) + () +… (1.21)

и, ограничившись первыми двумя членами разложения, из (1.19) получаем формулу Релея—Джинса (1.14):

R ( =

в предельном случае больших частот ( >>1) единицей в знаменателе формулы (1.19) можно пренебречь, тогда получим формулу

, (1.22)

которая совпадает с выражением (1.11), т.е. с формулой Вина, причем, функция F ( представляет собой выражение,

,

действительно зависящее от отношения частоты к температуре.

Интегральную излучательную способность АЧТ (закон Стефана—Больцмана) можно получить, проинтегрировав выражение (1.20) по длинам волн в интервале от 0 до :

. (1.23)

Произведем замену переменной. Обозначим , тогда подстановка и приводит выражение (1.21) к виду

, (1.24)

где . Так как , то

. (1.25)

Интегральную характеристику R(T) называют также энергетической светимостью АЧТ. Как видим, величина s (постоянная Стефана-Больцмана) выражается через постоянные величины c, h, k. Размерность [s] = Вт/(м24).


Оптическая пирометрия

Для измерения температуры нагретых тел используются различные приборы (например, термометры расширения, электрические термометры сопротивления, термопары и т. д.). Однако для сильно нагретых тел (свыше 2000 0С) эти методы измерения температуры непригодны, особенно если раскаленные тела, температуру которых необходимо определить, чрезвычайно удалены от наблюдателя (например, Солнце, звезды). В таких случаях используются методы, основанные на законах теплового излучения.

Совокупность оптических (бесконтактных) методов измерения высоких температур на основе зависимости между температурой и излучательной способностью (спектральной или интегральной) исследуемого тела называют оптической пирометрией. Приборы, используемые для этой цели, называются пирометрами излучения. В радиационных пирометрах регистрируется интегральное излучение исследуемого нагретого тела, а в оптических пирометрах − его излучение на одном или двух участках спектра.

В зависимости от того, какой закон теплового излучения АЧТ положен в основу при измерении температуры нагретых тел, различают три температуры − радиационную, цветовую и яркостную.

Радиационная температура Т р – это такая температура абсолютно черного тела, при которой его энергетическая светимость равна энергетической светимости исследуемого тела. Так как все реальные тела, температура которых измеряется, являются серыми и для них поглощательная способность А (T) < 1, то радиационная температура Т р тела, определяемая из закона Стефана-Больцмана, всегда меньше его истинной температуры тела Т, причем

. (1.30)

Цветовую температуру определяют на основании закона Вина, используя то свойство, что распределение энергии в спектре излучения серого тела такое же, как и в спектре абсолютно черного тела, имеющего ту же температуру. В этом случае излучающее серое тело имеет такой же цвет, как черное тело температуры Тц. Цветовая температура определяется по формуле

Тц = b/λmax (1.31)

и совпадает с истинной температурой тела. Для тел, характер излучения которых сильно отличается от излучения абсолютно черного тела (например, обладающих явно выраженными областями селективного поглощения), понятие цветовой температуры не имеет смысла. Таким способом определяется температура на поверхности Солнца и звезд. Сравнение спектра излучения Солнца и абсолютно черного тела показывает, что их отождествлять можно только довольно приблизительно. При таком приближении получили цветовую температуру Солнца примерно 6500 К.

Яркостная температура Тя – это температура абсолютно черного тела, при которой для определенной длины волны его спектральная плотность энергетической светимости равна спектральной плотности энергетической светимости исследуемого тела. Определение яркостной температуры основано на применении закона Кирхгофа для излучения исследуемого тела. В качестве яркостного пирометра обычно используется пирометр с исчезающей нитью, принцип работы которого основывается на сравнении излучения нагретого тела в определенном спектральном интервале с длиной волны λ с излучением абсолютно черного тела с той же длиной волны. Накал нити пирометра подбирается таким образом, что ее изображение становится неразличимым на фоне поверхности нагретого тела, т.е. нить как бы «исчезает». В этом случае яркости излучения нити и нагретого тела для данной λ совпадают и, следовательно, совпадают их излучательные способности. Используя предварительно проградуированный по абсолютно черному телу миллиамперметр, измеряющий ток нити пирометра, можно определить яркостную температуру. Если исследуемый источник излучения также является черным телом, то найденная температура является его истинной температурой. В противном случае при известных значениях А (λ, T) и λ можно определить истинную температуру исследуемого нагретого тела:

. (1.32)

Кроме пирометров с исчезающей нитью существуют и другие пирометры для определения яркостной температуры, а через нее и истинной температуры нагретых тел. Яркостные пирометры обеспечивают наибольшую точность измерений температуры в диапазоне (103 − 104) K.

В заключение необходимо отметить, что блестящие результаты, достигнутые при применении гипотезы Планка, стали первым серьезным указанием на то, что к явлениям лучеиспускания законы классической физики уже неприменимы. Эта гипотеза показывала, что должна быть создана новая теория, в которой необходимо четко зафиксировать то, что некоторые физические величины способны принимать не непрерывный, а дискретный ряд значений. Гипотеза Планка не только положила начало квантовым представлениям о природе света, но и стала базой для создания квантовой механики.


3. Внешний фотоэлектрический эффект. Уравнение Эйнштейна.

Явление вырывания электронов с поверхности вещества под действием электромагнитного излучения называется внешним фотоэффектом. Фотоэлектрическими свойствами обладают металлы, полупроводники, а также диэлектрики и электролиты.Гипотеза Планка, решившая задачу теплового излучения абсолютно черного тела, получила дальнейшее развитие при объяснении фотоэлектрического эффекта или фотоэффекта – явления, открытие и исследование которого сыграло важную роль в становлении квантовой теории. В 1887 году Г. Герц обнаружил, что при освещении отрицательного электрода ультрафиолетовыми лучами разряд между электродами происходит при меньшем напряжении. Это явление, как показали опыты В. Гальвакса (1888 г.) и А.Г. Столетова (1888–1890 гг.), обусловлено выбиванием из электрода под действием света отрицательных зарядов. К моменту открытия этого явления электрон еще не был известен. Лишь в 1898 году Д.Д. Томпсон и Ф. Леонард определили заряд частиц, испускаемых поверхностью твердых тел и жидкостей под действием света, и установили, что эти частицы являются электронами, которые в дальнейшем будем называть фотоэлектронами.

Исследования внешнего фотоэффекта у металлов показали, что результаты эксперимента зависят не только от химической природы металла, но и от состояния его поверхности. Даже ничтожные загрязнения поверхности металла существенно влияют на эмиссию (испускание) электронов под действием света. Поэтому для изучения фотоэффекта пользуются вакуумной трубкой.

Принципиальная схема для исследования фотоэффекта приведена на рисунке 2.1. Два электрода (катод К из исследуемого материала и анод А, в качестве которого Столетов применял металлическую сетку) в вакуумной трубке подключены к батарее так, что с помощью потенциометра R можно изменять не только значение, но и знак подаваемого на них напряжения. Ток, возникающий при освещении катода монохроматическим светом (через кварцевое стекло), измеряется включенным в цепь миллиамперметром.

Вольт-амперные характеристики фотоэффекта, т.е. зависимости фототока I, образуемого потоком электронов, от напряжения, приведены на рис. 2.2.

Такие зависимости силы фототока от напряжения , соответствуют двум различным значениям светового потока, причем . Частота света в обоих случаях одинакова.

По мере увеличения U фототок постепенно возрастает, т.е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различными скоростями.

Рис.2.2.

Максимальное значение фототока насыщения I нас определяются таким значением напряжения , при котором все электроны, испускаемые катодом, достигают анода. Из рисунка следует, при U = 0 фототок не исчезает.

Следовательно, электроны, выбитые из катода, обладают некоторой начальной скоростью V, а значит и отличной от нуля кинетической энергией, поэтому они могут достигнуть катода без внешнего поля. Для того, чтобы фототок стал равным нулю, необходимо приложить задерживающее напряжение U з. При U = U з ни один из электронов, даже обладающий при вылете из катода максимальной скоростью V max, не может преодолеть задерживающего поля и достигнуть анода. Следовательно,

(2.1)

т.е. по задерживающему напряжению U з, можно определить максимальные значения скорости и кинетической энергии фотоэлектрона.

Процесс поглощения света веществом сводится к тому, что фотоны передают всю свою энергию частицам этого вещества. С позиций квантовой природы света Эйнштейн дал наглядное объяснение явления фотоэффекта. Для того, чтобы вырвать электроны из вещества, необходимо совершить работу, которая называется работойвыхода А. Эта работа расходуется на преодоление задерживающих сил, действующих в поверхностном слое металла. Если энергия , то фотоэффект будет наблюдаться. В соответствии с законом сохранения энергии Эйнштейн предложил уравнение:

. (2.5)

Здесь выражение = Wк представляет собой максимально возможную кинетическую энергию Wк электрона, вырываемого излучением частотой . Так как работа выхода является константой для данного вещества, то кинетическая энергия электрона линейно зависит от частоты света и не зависит от его интенсивности (2.5). Уравнение (2.5) объясняет все экспериментально установленные законы фотоэффекта: во-первых, из соотношения (2.5) следует, что максимальная скорость вырванных фотоэлектронов зависит не от интенсивности , а от частоты света (второй закон фотоэффекта); во-вторых, внешний фотоэффект возможен только в том случае, если энергия фотона больше или равна работе выхода электрона из металла. Минимальная частота , при которой еще возможен фотоэффект (третий закон фотоэффекта), определяется по формуле:

. (2.6)

И, наконец, общее число фотоэлектронов, вылетающих из вещества за единицу времени, пропорционально числу фотонов, которые попадают за это же время на поверхность вещества, т.е. число пропорционально интенсивности падающего света (первый закон фотоэффекта).

С помощью соотношений (2.5) и (2.6) уравнение Эйнштейна для фотоэффекта (2.2) можно записать в виде

(2.7)

Если значения и известны, то, определив значение задерживающего напряжения , можно с помощью формулы (2.4) найти постоянную Планка

(2.8)

Можно также для известных значений и измерить значения задерживающих напряжений и и, используя уравнение Эйнштейна, рассчитать постоянную Планка, не определяя :

. (2.9)

Совпадение экспериментальных значений по определению постоянной Планка согласно формулам (2.9) с результатами ее измерения в опытах по тепловому излучению абсолютно черного тела подтверждает справедливость уравнения Эйнштейна для фотоэффекта.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями: