При переходе через границу раздела двух диэлектриков электрический потенциал не претерпевает скачков

13) Преломление силовых линий на границе раздела диэлектриков

На границе двух диэлектриков с различными диэлектрическими проницаемостями 1, и 2 при наличии внешнего поля возникают поляризационные заряды разного знака с различными поверхностными плотностями зарядов +1' и +2'.

Из данных граничных условий можно получить еще одно условие – условие преломления линий поля при переходе их из одного диэлектрика

в другой:

где и – углы между вектором напряженности (или плотности тока) и нормалями к границе раздела сред. При этом, если вектор напряженности перпендикулярен к границе раздела, то плотность тока не меняется при переходе из одной среды в другую, а напряженность поля меняется скачком.

Закон преломления линий тока по форме вполне аналогичен закону преломления линий электрического смещения на границе двух диэлектриков в электростатическом поле.

Во многих практических случаях мы встречаемся с переходом тока из металлических тел в окружающую среду, удельная проводимость которой во много раз меньше удельной проводимости материала этих тел. Такие условия имеют место, например, в случае перехода тока через зарытые в землю металлические электроды. Обычно применяют стальные электроды.

14) Электроемкость

Если двум изолированным друг от друга проводникам сообщить заряды q 1 и q 2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников. Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U. Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q 1 = – q 2 = q. В этом случае можно ввести понятие электрической емкости.

Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:

В системе СИ единица электроемкости называется фарад (Ф):

Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники. Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, – обкладками.

Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика. Такой конденсатор называется плоским. Электрическое поле плоского конденсатора в основном локализовано между пластинами (рис. 1.6.1); однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния. В целом ряде задач приближенно можно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками (рис. 1.6.2). Но в других задачах пренебрежение полем рассеяния может привести к грубым ошибкам, так как при этом нарушается потенциальный характер электрического поля (см. § 1.4).

Рисунок 1.6.1. Поле плоского конденсатора
Рисунок 1.6.2. Идеализированное представление поля плоского конденсатора. Такое поле не обладает свойством потенциальности

Каждая из заряженных пластин плоского конденсатора создает вблизи поверхности электрическое поле, модуль напряженности которого выражается соотношением (см. § 1.3)

Согласно принципу суперпозиции, напряженность поля, создаваемого обеими пластинами, равна сумме напряженностей и полей каждой из пластин:

Внутри конденсатора вектора и параллельны; поэтому модуль напряженности суммарного поля равен

Вне пластин вектора и направлены в разные стороны, и поэтому E = 0. Поверхностная плотность σ заряда пластин равна q / S, где q – заряд, а S – площадь каждой пластины. Разность потенциалов Δφ между пластинами в однородном электрическом поле равна Ed, где d – расстояние между пластинами. Из этих соотношений можно получить формулу для электроемкости плоского конденсатора:

Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз:

Примерами конденсаторов с другой конфигурацией обкладок могут служить сферический и цилиндрический конденсаторы. Сферический конденсатор – это система из двух концентрических проводящих сфер радиусов R 1 и R 2. Цилиндрический конденсатор – система из двух соосных проводящих цилиндров радиусов R 1 и R 2 и длины L. Емкости этих конденсаторов, заполненных диэлектриком с диэлектрической проницаемостью ε, выражаются формулами:

(сферический конденсатор), (цилиндрический конденсатор).

Конденсаторы могут соединяться между собой, образуя батареи конденсаторов. При параллельном соединении конденсаторов (рис. 1.6.3) напряжения на конденсаторах одинаковы: U 1 = U 2 = U, а заряды равны q 1 = С1 U и q 2 = C 2 U. Такую систему можно рассматривать как единый конденсатор электроемкости C, заряженный зарядом q = q 1 + q 2 при напряжении между обкладками равном U. Отсюда следует


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: