Дифракция от круглого отверстия

Поставим на пути сферической световой волны непрозрачный экран с круглым отверстием радиуса . Экран расположен так, что перпендикуляр, опущенный из S на непрозрачный экран, попадает точно в центр отверстия (рис. 9.3).

Рис. 9.3

На продолжении этого перпендикуляра возьмем точку M и рассмотрим, что мы будем наблюдать на экране.

Разобьем открытую часть волновой поверхности на зоны Френеля. Вид дифракционной картины зависит от числа зон Френеля, открываемых отверстием. Амплитуда результирующего колебания, возбуждаемого в точке М всеми зонами (9.2.1) и (9.2.2),

  (9.3.1)  

Таким образом, когда отверстие открывает нечетное число зон Френеля, то амплитуда (интенсивность) в точке М будет больше, чем при свободном распространении волны; есличетное, то амплитуда (интенсивность) будет равна нулю, как показано на рис. 9.3. Естественно, что если , то никакой дифракционной картины не будет.

Дифракция от дискаСферическая волна, распространяющаяся от точечного источника S, встречает на своем пути диск (рис. 9.4).

Рис. 9.4

Точка M лежит на перпендикуляре к центру диска. Первая зона Френеля строится от края диска и т. д. Амплитуда световых колебаний в точке M равна половине амплитуды, обусловленной первой открытой зоной. Если размер диска невелик (охватывает небольшое число зон), то действие первой зоны немногим отличается от действия центральной зоны волнового фронта. Таким образом, освещенность в точке M будет такой же, как и в отсутствие экрана. Вследствие симметрии центральная светлая точка будет окружена кольцами света и тени (вне границ геометрической тени).

Парадоксальное, на первый взгляд, заключение, в силу которого в самом центре геометрической тени может находиться светлая точка, было выдвинуто Пуассоном в 1818 г. и впоследствии было названо его именем. «Пятно Пуассона» подтверждает правильность теории Френеля

20. При прохождении света через некоторые оптически прозрачные кристаллы происходит разделение светового луча.

это явление получило название двойного лучепреломления и было впервые обнаружено в 1670г. эразмом Бартолини для кристалла исландского шпата (одна из разновидностей СаСО3). Было установлено, что при любых углах падения вышедшие из кристалла два луча параллельны друг другу и обладают одинаковыми интенсивностями. Один из них удовлетворяет закону преломления света, называется обыкновенным лучом и обозначается на чертежах буквой "о". Второй не подчиняется закону преломления света, называется необыкновенным, обозначается буквой "e". Он не лежит в одной плоскости с падающим лучом и нормалью в точке падения (рис. 5).

Исследования показывают, что вышедшие из кристалла обыкновенный и необыкновенный лучи полностью поляризованы во взаимно перпендикулярных плоскостях.

Двойным лучепреломлением называется способность некоторых веществ расщеплять падающий световой луч на два луча – обыкновенный (о) и необыкновенный (e), которые распространяются с различными фазовыми скоростями и поляризованы во взаимно перпендикулярных направлениях.Двоякопреломляющими свойствами обладают:

а) многие кристаллы (исландский шпат, кварц, слюда, турмалин), за исключением принадлежащих к кубической системе;

б) многие прозрачные вещества (стекло, искусственные смолы), находящиеся под действием упругих деформаций (напряжений) - сжатия, растяжения, изгиба, кручения;

в) некоторые изотропные вещества под действием электрического поля. Кристаллы, обладающие двойным лучепреломлением, подразделяются на одноосные и двуосные.

У двуосных кристаллов (слюда, гипс) оба луча необыкновенные – показатели преломления для них зависят от направления в кристалле.

В дальнейшем мы ограничимся рассмотрением только одноосных кристаллов.

Ряд кристаллов (исландский шпат, кварц) имеют направление, вдоль которого обыкновенный и необыкновенный лучи распространяются не раздваиваясь и с одинаковой скоростью. Такие кристаллы получали название одноосных, а направление, вдоль которого не происходит двойного лучепреломления, называется оптической осью кристалла. Плоскость, содержащая падающий луч и оптическую ось, называется главной плоскостью или главным сечением кристалла.Исследования показали, что вектор в обыкновенном луче колеблется перпендикулярно главному сечению, а в необыкновенном – в плоскости главного сечения.

В некоторых кристаллах один из лучей поглощается сильней другого. это явление называется дихроизмом. Очень сильным дихроизмом в видимых лучах обладает кристалл турмалина. В нем обыкновенный луч практически полностью поглощается на длине 1 мм.

Двойное лучепреломление объясняется анизотропией кристаллов. В кристаллах некубической системы диэлектрическая проницаемость оказывается зависящей от направления. В одноосных кристаллах в направлениях оптической оси и в направлениях, перпендикулярных к ней, имеет различные значения и , .

В теории электромагнитного поля Максвелла показано, что , следовательно, электромагнитным волнам с разными направлениями колебаний будут соответствовать разные значения показателя преломления.

21. Простейшие поляризационные устройства. В П для получения полностью или частично поляризованного света используется одно из трёх физических явлений: 1) поляризация при отражении света или преломлении света на границе раздела двух прозрачных сред; 2) линейны и дихроизм — одна из форм плеохроизма; 3) двойное лучепреломление. Свет, отражённый от поверхности, разделяющей две среды с разными преломления показателями n,всегда частично поляризован. Если же луч света падает на границу раздела под углом, тангенс которого равен отношению абсолютных n 2-й и 1-й сред (их относительный n), то отражённый луч поляризован полностью (см.Брюстера закон). Недостатки отражательных П — малость коэффициента отражения и сильная зависимость степени поляризации р от угла падения и длины световой волны. Преломленный луч также частично поляризован, причём его рмонотонно возрастает с увеличением угла падения. Пропуская свет последовательно через несколько прозрачных плоскопараллельных пластин, можно достичь того, что р прошедшего света будет значительна (см. Стопа в оптике). Среды, обладающие оптической анизотропией, по-разному поглощают лучи различных поляризаций. В частности, в областях собственных и примесных полос поглощения света двулучепреломляющие среды неодинаково поглощают обыкновенный и необкновенный лучи (см. Кристаллооптика); это и есть их линейный дихроизм. Если толщина пластинки, вырезанной из анизотропного кристалла (с полосами поглощения в нужной области спектра) параллельно егооптической оси, достаточна, чтобы один из лучей поглотился практически нацело, то прошедший через пластинку свет будет полностью поляризован. Такие П называют дихроичными. К дихроичным П относятся и поляроиды, поглощающее вещество которых может быть как кристаллическим, так и некристаллическим. Важные преимущества поляроидов — компактность, большие рабочие апертуры (максимальные углы раствора сходящегося или расходящегося падающего пучка, при которых прошедший свет ещё поляризован полностью) и практически полное отсутствие ограничений в размере.

П, действие которых основано на явлении двойного лучепреломления, подробно описаны в ст. Поляризационные призмы. Их апертуры меньше, чем у поляроидов, а габариты, вес и стоимость больше; однако они всё же незаменимы в ультрафиолетовой области спектра и при работе с мощными потоками оптического излучения. Пластинки из оптически анизотропных материалов, вносящие сдвиг фазы между двумя взаимно перпендикулярными компонентами электрического вектора Е проходящего через них излучения (соответствующими двум линейным поляризациям), называют фазовыми, или волновыми, пластинками (ФП) и предназначены для изменения состояния поляризации излучения. Так, циркулярные или эллиптическимие П обычно представляют собой совокупность линейного П и ФП. Для получения света, поляризованного по кругу (циркулярно), применяют ФП, вносящую сдвиг фазы в 90° (пластинка четверть длины волны, см.(смотри) Компенсатор оптический). Двулучепреломляющие ФП изготовляют как из материалов с естественной оптической анизотропией (например, кристаллов), так и из веществ, анизотропия которых индуцируется приложенным извне воздействием — электрическим полем, механическим напряжением и пр. (см. Керра ячейка, Фотоупругость, Электрооптика). Применяются также отражательные ФП (например, ромб Френеля, рис. 1); принцип их действия основан на изменении состояния поляризации света при его полном внутреннем отражении.Преимуществом отражательных ФП перед двупреломляющими является почти полное отсутствие зависимости фазового сдвига от длины волны.

Все П (линейные, циркулярные, эллиптические) могут использоваться не только как П в собственном смысле слова (для получения света требуемой поляризации), но и для анализа состояния поляризации света, т. е. как анализаторы. Анализ эллиптически поляризованного света производят с помощью компенсаторов разности хода, простейшим из которых является упомянутая выше четвертьволновая ФП. Часто возникающую проблему деполяризации частично поляризованного излучения обычно решают не истинной деполяризацией (это — исключительно сложная задача), а сводят её к созданию тонкой пространственной, спектральной или временной поляризационной структуры светового пучка.

23.

Тепловое излучение — единственное, способное находиться в тер­модинамическом равновесии с веществом. Такое излучение, называемое равновесным излучением, устанавливается в адиабатически замкнутой (теплоизолированной) системе, все тела которой находятся при одной и той же температуре. При равновесии энергия, расходуемая каждым из тел системы на тепловое излучение, компенсируется путем погло­щения этим телом такого же количества энергии падающего на него излучения.

2. Спектральной характеристикой теплового излучения тела слу­жит его испускательная способность, называемая также спектральной плотностью энергетической светимости тела, которая равна

где — энергия электромагнитного излучения, испускаемого

за единицу времени с единицы площади поверхности тела в интервале частот от до Таким образом, испускательная способность

тела численно равна мощности излучения с единицы площади по­верхности этого тела в интервале частот единичной ширины. Из формулы (10.1) видно, что в СИ выражается в джоулях на квадратный метр

Спектральной характеристикой поглощения электромагнитных волн телом служит поглощательная способность тела (монохрома­тический коэффициент поглощения тела)

показывающая, какая доля энергии доставляемой за единицу

времени на единицу площади поверхности тела падающими на нее электромагнитными волнами с частотами от до поглощается

телом. Очевидно, что — величина безразмерная.

Опыты показывают, что испускательная и поглощательная способ­ности твердого тела зависят от частоты v соответственно излучаемых и поглощаемых волн, температуры тела, его хи­мического состава и состояния поверхности.

3. Тело называется абсолютно черным, если оно при любой температуре полностью поглощает всю энергию падающих на него электромагнитных волн независимо от их частоты, поляризации и направления распространения, ничего не отражая и не пропуская. Следовательно, поглощательная способность абсолютно черного тела Тождественно равна единице:

Рис. Испускательную способность абсолютно черного тела будем обозначать через Она зависит только от частоты v из­лучения и абсолютной температуры Т тела.

Все реальные тела не являются абсолютно черными. Однако не­которые из них в определенных интервалах частот близки по своим свойствам к абсолютно черному телу. Например, в области частот видимого света поглощательные способности сажи, платиновой черни и черного бархата мало отличаются от единицы. Наиболее совершенной моделью абсолютно черного тела может служить небольшое отверстие О в непрозрачной стенке замкнутой полости Луч света, попадающий внутрь полости через отверстие О, претерпевает много­кратные отражения от стенок полости, прежде чем он выйдет из по­лости обратно. Поэтому независимо от материала сте­нок интенсивность луча света, выходящего из полости через отверстие О, во много раз меньше интенсивности падающего извне первичного луча. Очевидно, что отверстие тем ближе по своим свойствам к абсо­лютно черному телу, чем больше отношение площади поверхности полости к площади отверстия. Испуская электромагнитные волны, а также частично поглощая падающие на них волны, тела способны обмениваться энергией. Этот самопроизвольный процесс передачи энергии в форме теплоты от более нагретого тела к менее нагретому называется теплообменомпутем излучения или радиационным теплообменом. Теплообмен излучением в отличие от теплообмена путем конвекции и теплопроводности может осуществляться между телами, находящимися не только в какой-либо среде, но и в вакууме. Следовательно, для любого тела энергия излучаемая за единицу времени с единицы площади поверх­ности, должна быть равна энергии поглощаемой за то же время этим участком поверхности тела за счет падающего на него излучения

Из (10.3) следует, что при равновесном излучении выполняется правило Прево: если два тела поглощают разные количества энергии, то и излучение у них тоже должно быть различным.

В уравнении (10.3) и характеризуют интегральное излучение и поглощение единицы площади поверхности тела, т. е. осуществляемое в области всех возможных значений частот электромагнитных волн от 0 до Окружим рассматриваемый элемент поверхности тела фильтром, который абсолютно прозрачен для волн с частотами от до и полностью отражает волны с частотами,

меньшими v и большими Тогда с помощью рассуждений, аналогичных приведенным выше, мы получим следующее дифференци­альное соотношение для теплового излучения:

(10.4)

где и — энергия, соответственно излучаемая и поглощаемая единицей площади поверхности тела за единицу времени в интервале частот от до

Примером равновесного излучения может служить излучение" замкнутой оболочки, окруженной снаружи абсолютно теплонепрони­цаемой изоляцией. Электромагнитное поле излучения оболочки пол­ностью локализовано в объеме полости. Между оболочкой и полем ее излучения устанавливается термодинамическое равновесие: энергия,ч излучаемая каждым элементом поверхности оболочки за единицу времени, равна энергии, передаваемой полем излучения этому эле­менту за то же время. Основываясь на втором законе термодинамики, можно показать, что объемная плотность wэнергии поля одинакова во всех точках полости и полностью определяется температурой обо­лочки. Иначе говоря, при одной и той же температуре значения w для замкнутых полостей с любыми оболочками и для полости с абсо­лютно черной оболочкой должны быть одинаковыми. Поэтому равно­весное излучение в замкнутой полости называют черным излучением. Испускательная способность абсолютно черного тела и объемная плотность энергии поля черного излучения связаны соотношением

(10. Г)Здесь — энергия поля черного излучения в интервале частот от до приходящаяся на единицу объема поля, а

— функция частоты и температуры, характеризующая распределение энергии черного излучения по частотам и называемая спектральной плотностью энергии черного излучения.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: