Активная и тоническая передача сигнала. Содержание

[убрать]

· 1 Передача сигнала

o 1.1 Сигнальный каскад

o 1.2 Интернализация рецептора

o 1.3 Активная и тоническая передача сигнала

· 2 Роль в развитии заболеваний

o 2.1 Лимфомы

· 3 Примечания

Передача сигнала[

Сигнальный каскад [

Передача сигнала от B-клеточного рецептора начинается с узнавания рецептором антигена и агрегации нескольких рецепторов. Ответ клетки на такое узнавание зависит от класса тяжёлой цепи рецептора. В случае В-клеточного рецептора, содержащего тяжёлые цепи класса M (такие рецепторы характерны для наивных B-лимфоцитов), после связывания антигена киназы семейства Src (Lyn, Fyn и Blk) фосфорилируют особые остатки тирозина в цитоплазматических доменах CD79a и CD79b (мотивы ITAM). Белки, содержащие SH2-домены, связываются с фосфорилированными ITAM-мотивами, после чего могут быть активированы. Например, киназаSYK привлекается в мембрану за счёт связывания с фосфотирозином и активируется киназами Src-семейства. SYK инициирует сборку сигнального комплекса, включающего белки CIN85, BLNK, тирозинкиназу Брутона (BTK) и фосфолипазу Cγ2 (PLCγ2). BTK фосфорилирует и активирует PLCγ2, которая, в свою очередь,гидролизует фосфатидилинозитол-4,5-бисфосфат до диацилглицерола и инозитолтрифосфата, что приводит к высвобождению внутриклеточных запасов ионов кальция[4].

После активации B-клеточного рецептора трансмембранный ко-рецептор CD19 также фосфорилируется тирозинкиназой Lyn и привлекает фосфатидилинозитол-3-киназу в рецепторный комплекс. Эта киназа фосфорилирует фосфатидилинозитол-4,5-бисфосфат во внутреннем листке клеточной мембраны с образованием фосфатидилинозитол-3,4,5-трифосфата, с которым связываются белки, содержащие PH-домен, такие как BTK и Akt. В результате передачи сигнала от B-клеточного рецептора активируются сигнальные пути PI3K, Ras, MAPK, NFAT и NF-κB[4].

Интернализация рецептора [править | править исходный текст]

Через несколько десятков секунд после связывания антигена В-клеточный рецептор интернализуется в составе сначала ранних, а затем поздних эндосом. Ранее считалось, что эндоцитоз рецептора приводит к прекращению передачи сигнала от него. Однако исследование 2011 года показало, что рецептор остаётся активным и в эндосомах, и, более того, именно благодаря интернализации достигается его оптимальная функциональная активность. По мнению авторов, В-клеточный рецептор оказывается в разном молекулярном микроокружении в клеточной мембране и эндосомах, и это обеспечивает ещё один уровень контроля за передачей сигнала от него[5].

Активная и тоническая передача сигнала [править | править исходный текст]

Описанный выше сценарий называют «активной» передачей сигнала. Сигнальный каскад В-клеточного рецептора включается в полную силу после того, как наивный B-лимфоцит сталкивается со своим антигеном. В конечном итоге это приводит к пролиферации и созреванию В-лимфоцита в герминативном центре. При активной передаче сигнала в конечном итоге активируется NF-κB. В зрелых В-лимфоцитах передача сигнала от B-клеточного рецептора, хоть и не такая активная, происходит постоянно и необходима для их выживания. Это называется «тонической» передачей сигнала. Предполагают, что тоническая активация сигнального каскада может быть независимой от присутствия антигена. В тонической передаче сигнала большую роль играет PI3K-сигнальный путь и меньшую — NF-κB[4].

Роль в развитии заболеваний[править | править исходный текст]

Лимфомы [править | править исходный текст]

Клетки большинства B-клеточных лимфом сохраняют В-клеточные рецепторы на своей поверхности. При этом многие из них синтезируют рецептор класса M, хотя клетки-предшественники этих лимфом (активированные B-лимфоциты) в норме синтезируют рецепторы класса G. Жизнеспособность таких опухолей, как правило, сильно зависит от активности рецептора, и они оказываются чувствительными к ингибиторам передачи сигнала по этому пути[4]. При этом злокачественные клетки могут полагаться как на так называемую «хроническую активную» передачу сигнала, так и на тоническую. Так, например, в клетках диффузной крупноклеточной B-клеточной лимфомы подтипа ABC (англ. activated B cell-like) постоянно происходит активная передача сигнала от В-клеточного рецептора класса M: опухоль очень чувствительна к потере активности практически любого компонента сигнального каскада (IgH, Igκ, CD79a, CD79b, SYK, BLNK, BTK, PLCγ2, PI3Kδ, PKCβ, CARD11, NF-κB, CBM), а также к его ингибиторам, например, ингибитору тирозинкиназы Брутона, ибрутинибу[6][7]. С другой стороны, лимфома Бёркитта характеризуется тонической передачей сигнала от В-клеточного рецептора: эти клетки чувствительны к потере CD79a/CD79b и SYK, но не CARD11 и BTK и сильнее зависят от PI3K-сигнального пути[4].

Т-клеточные рецепторы (англ. TCR) — поверхностные белковые комплексы Т-лимфоцитов, ответственные за распознавание процессированных антигенов, связанных с молекулами главного комплекса гистосовместимости (англ. MHC) на поверхностиантиген-представляющих клеток. TCR состоит из двух субъединиц, заякоренных в клеточной мембране и ассоциирован с многосубъединичным комплексом CD3. Взаимодействие TCR с MHC и связанным с ним антигеном ведет к активации Т-лимфоцитов и является ключевой точкой в запуске иммунного ответа.

Структура[править | править исходный текст]

Схема комплекса двух TCR с CD3

TCR представляет собой гетеродимерный белок, состоящий из двух субъединиц — α и β либо γ и δ, представленных на поверхности клетки. Субъединицы закреплены в мембране и связаны друг с другом дисульфидной связью.

По своей структуре субъединицы TCR относятся к суперсемейству иммуноглобулинов. Каждая из субъединиц образована двумядоменами с характерной иммуноглобулиновой укладкой, трансмембранным сегментом и коротким цитоплазматическим участком.

N-концевые домены являются вариабельными (V) и отвечают за связывание антигена, презентируемого молекулами главного комплекса гистосовместимости. В составе вариабельного домена содержится характерный для иммуноглобулинов гипервариабельный участок (CDR). За счет необычайного разнообразия данных участков, различные Т-клетки способны распознавать широчайший спектр различных антигенов.

Второй домен — константный (C) и его структура одинакова у всех субъединиц данного типа у конкретной особи (за исключением соматических мутаций на уровне генов любых других белков). На участке между С-доменом и трансмембранным сегментом имеется остаток цистеина, с помощью которого между двумя цепями TCR образуется дисульфидная связь.

Субъединицы TCR агрегированы с мембранным полипептидным комплексом CD3. CD3 образован четырьмя типами полипептидов — γ, δ, ε и ζ. Субъединицы γ, δ и ε кодируются тесно сцепленными генами и имеют близкую структуру. Каждая из них образована одним константным иммуноглобулиновым доменом, трансмембранным сегментом и длинной (до 40 аминокислотных остатков) цитоплазматической частью. Цепь ζ имеет маленький внеклеточный домен, трансмембранный сегмент, и большой цитоплазматический домен. Иногда вместо цепи ζ в состав комплекса входит цепь η - более длинный продукт того же гена, полученный путем альтернативного сплайсинга.

Поскольку структура белков комплекса CD3 инвариантна (не имеет вариабельных участков), они не способны определять специфичность рецептора к антигену. Распознавание является исключительно функцией TCR, а CD3 обеспечивает передачу сигнала в клетку.

Трансмембранный сегмент каждой из субъединиц CD3 содержит отрицательно заряженный аминокислотный остаток, а TCR – положительно заряженный. За счет электростатических взаимодействий они объединяются в общий функциональный комплекс Т-клеточного рецептора. На основании стехиометрических исследований и измерения молекулярной массы комплекса наиболее вероятным его составом является (αβ)2+γ+δ+ε22.

TCR, состоящие из αβ-цепей и γδ-цепей весьма близки по структуре. Эти формы рецепторов по-разному представлены в различных тканях организма.

АДАПТИВНЫЙ (ПРИОБРЕТЕННЫЙ) ИММУНИТЕТ

— ВТОРАЯ (СПЕЦИФИЧЕСКАЯ) ЛИНИЯ ИММУННОЙ ЗАЩИТЫ

Реакции адаптивного иммунитета развиваются сразу же вслед за реакциями воспаления, В организме они сводятся к отбо­ру и быстрому размножению лимфоцитарных клонов, способных специфически распознавать антигены возбудителя. В дальней­шем клетки этих клонов, дифференцируясь, вырабатывают спе­цифически направленные молекулы — антитела, или, специфиче­ски распознавая мишени, убивают их.

Антитела резко усиливают эффективность реакции первой линии защиты (фагоцитоза, внеклеточного цитолиза, цитолити-ческих эффектов комплемента и др.) Они повышают «прицель-ностъ» действия этих реакций, указывая направление атаки фа­кторам врожденного неспецифического иммунитета.

Как следует из предыдущего раздела, включение первой ли­нии иммунной защиты основано на проявлении реакций врож­денного иммунитета. Развиваются они благодаря древним, эво-люционно закрепившимся механизмам распознавания компо­нентов возбудителей и материала собственных поврежденных клеток. Для удаления из организма непатогенных и слабовиру­лентных микроорганизмов этих факторов, по всей видимости, вполне достаточно.

В случае же массивного заражения или высокой вирулент­ности внедрившихся микроорганизмов в защиту вступает вто­рая, более специализированная линия обороны.

Включается она практически одновременно с развитием реакций неспецифического, врожденного иммунитета. Однако для ее развития требуется время, поэтому проявляется она не­сколько позже.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow