Фазово-контрастная и интерференционная микроскопия

Возможность потери или нарушения образцов в процессе их приготовления всегда беспокоила микроскопистов. Единственный способ решить эту проблему состоит в изучении живых клеток без фиксации или замораживания. Для этой цели очень полезны микроскопы со специальными оптическими системами.

При прохождении света через живую клетку фаза световой волны меняется согласно коэффициенту рефракции клетки: свет, проходящий через относительно тонкие или относительно толстые участки клетки, такие, как ядро, задерживается, и его фаза соответственно сдвигается по отношению к фазе света, проходящего через относительно тонкие участки цитоплазмы. Как в фазово-контрастном, так и в интерференционном микроскопеиспользуются эффекты интерференции, возникающие при рекомбинации двух наборов волн, которые и создают изображение клеточных структур. Оба типа световой микроскопии широко используются для наблюдения живых клеток.

Простейший способ разглядеть детали клеточной структуры - наблюдать свет, рассеивающийся различными компонентами клетки. В темнопольном микроскопелучи от осветителя направляются сбоку и при этом в линзы микроскопа попадают только рассеянные лучи. Соответственно клетка выглядит как освещенный объект на темном поле. Одним из основных преимуществ фазово-контрастной, интерференционной и темнопольной микроскопии является возможность наблюдать движение клеток в процессе митоза и миграции

Видеокамеры и соответствующие технологии обработки изображения значительно увеличили возможности световой микроскопии. Это позволило наблюдать клетки в течение длительного времени при низкой освещенности, исключая длительное воздействие яркого света (или тепла). Поскольку изображение создается видеокамерой в форме электронных сигналов, его можно соответствующим образом преобразовать в числовые сигналы, направить в компьютер и затем подвергнуть дополнительной обработке для извлечения скрытой информации. Эти и подобные методы обработки изображения позволяют компенсировать оптические недостатки микроскопов и практически достичь предела разрешения.

Высокий контраст, достижим с помощью компьютерной интерференционной микроскопии, позволяет наблюдатьдаже очень мелкие объекты, как, например, отдельные микротрубочкидиаметр которых менее одной десятой длиныволны света (0,025 мкм). Отдельные микротрубочки можно увидеть и с помощью флуоресцентной микроскопии. Однако в обоих случаях неизбежны эффекты дифракции, сильно изменяющие изображение. Диаметр микротрубочек при этом завышается (0,2 мкм), что не позволяет отличать отдельные микротрубочки от пучка из нескольких микротрубочек.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: