double arrow

Ионизирующие излучения


Радиоактивный распад ядер приводит к образованию нескольких типов ионизирующих излучений. Такое излучение, проходя через вещества, ионизирует их атомы и молекулы, то есть превращает их в электрически заряженные частицы - ионы. Термин "ионизирующие излучения" включает не только радиоактивные излучения, но также рентгеновские лучи.

Все виды ионизирующих излучений могут быть подразделены на два типа: (1) атомное излучение:α -частицы, β-частицы (электроны и позитроны), протоны, нейтроны и т.п.; и (2) волновое излучение - γ-лучи и рентгеновские лучи.

Взаимодействие ионизирующих излучений с веществом
α - частицы покидают материнские ядра с большой скоростью. При прохождении через вещество, их движение замедляется и прекращается из-за взаимодействия с электронами атомов вещества.β - частицы и протоны подвергаются также частым столкновениям с атомными электронами. Они передают электронам некоторую энергию, а также действуют на электроны электрическим полем. В результате радиоактивные частицы возбуждают и ионизируют атомы вещества. При одиночном столкновении α-частица передает только небольшую часть своей энергии. Пока частица остановится, происходит много столкновений. В результате в веществе остается след, который состоит из нескольких десятков тысяч ионов. При уменьшении кинетической энергии радиоактивной частицы она приобретает два электрона и становится нейтральным атомом гелия.

Поскольку α-частица намного больше, чем электрон, она практически не отклоняется при столкновениях, и ее путь представляет собой почти прямую линию. Этот путь α-частиц и протонов в веществе очень короткий. Средний диапазон пройденного до остановки расстояния изменяется обратно пропорционально плотности среды. Проникающая способность α-частиц небольшая. Они проходят только около 4см в воздухе и не проникают через лист бумаги и верхние слои клеток кожи человека.

β-частицы. Электроны и позитроны вылетают из материнских ядер с значительно большими скоростями, чем α- частицы. Однако, в отличие от α-частиц, скорости α-частиц значительно различаются. α-частицы проникают намного глубже в вещество. Они также вступают в конкуренцию с электронами атомов среды и теряют энергию, главным образом, возбуждая и ионизируя атомы. Кинетическая энергия электрона значительно меньше, чем у α-частицы. Ее величина достаточна, чтобы ионизировать только несколько десятков атомов. Из-за небольшой массы, β-частицы сильно отклоняются при каждом столкновении с электронами атомов вещества. Следовательно, электроны распространяются в веществе не по прямой линии, а произвольно. Диапазон пробега электронов в воздухе составляет несколько десятков сантиметров. Они могут быть остановлены несколькими сантиметрами дерева.

Диапазон пробега позитронов является приблизительно такими же, как и у электронов. В конечном счете позитрон замедляется, и взаимодействуя с электроном, уничтожается с испусканием γ-лучей.

γ- лучи ионизируют вещество, теряя энергию, передавая ее электронам атомов вещества. Они обладают широким диапазоном длин пробега в веществе и могут пройти даже через тело человека. Для защиты от γ-лучей, в зависимости от их энергии, требуется толстый экран, сделанный из тяжелого вещества, например, свинца. γ-лучи передают энергию электронам в ходе трех процессов:

a). Фотоэлектрический эффект проявляется, если γ-лучи обладают сравнительно небольшой энергией, а также при взаимодействии с веществом рентгеновских лучей. Фотон γ-луча поглощается атомом, в результате чего освобождается электрон. Этот процесс наиболее вероятен для атомов с большими зарядовыми числами.

б). Если энергия фотонов γ-лучей больше, чем энергия ионизации атомов вещества, то доминирует эффект Комптона. Фотон передает некоторую (но не всю) энергию электрону атома и может ионизировать еще некоторое число атомов.

c). Создание пары электрон-позитрон. Если энергия γ-фотона больше, чем в вышеуказанных процессах, она поглощается атомным ядром, и образуется пара частиц (электрон и позитрон).

Вероятность поглощения γ-лучей уменьшается при нарастании их энергии, поскольку при увеличении энергии γ-лучей они становятся более проникающими.












Сейчас читают про: