Б) Связь между декартовыми и полярными координатами

Пару полярных координат и можно перевести в Декартовы координаты x и y путём применения тригонометрических функций синуса и косинуса:

x = cos ,

y = sin ,

в то время как две декартовы координаты x и y могут быть переведены в полярную координату :

r2 = y2 + x2 (по теореме Пифагора).

3.Определение геометрического вектора, вычисление его длины (модуля) для случаев задания: начальной и конечной точками; и в виде = = .

а ) Геометрическим вектором а называется множество всех направленных векторов, имеющих одинаковую длину и направление. О всяком отрезке из этого множества говорят, что он представляет вектор a (получен приложением вектора a к точке А). Длинна отрезка называется длинной (модулем) вектора а и обозначается символом . Вектор нулевой длины называется нулевым вектором и обозначается символом 0.

б) Зная координаты начала и конца вектора, мы можем вычислить координаты вектора по формуле:

Зная координаты вектора модуль вектора вычисляется по формуле:

4. Геометрический смысл и физический смысл линейных операций с векторами: сумма векторов , и умножение вектора на вещественное число .

а) Суммой двух векторов называется вектор, имеющий начало в начале вектора , а конец – в конце вектора , при условии, что вектор приложен к концу вектора .

В соответствии с определением слагаемые и их сумма образуют треугольник (рис.ниже). Поэтому данное правило сложения двух векторов называют «правилом треугольника».

Операция сложения векторов обладает свойствами:

1. (коммутативность);

2. , (ассоциативность);

3. для любого вектора (особая роль нулевого вектора);

4. Для каждого вектора существует противоположный ему вектор такой, что (для получения достаточно поменять местами начало и конец вектора).

Вектор противоположный вектору обозначают

б) Произведением вектора на вещественное число λ (скаляр) называется вектор , такой, что 1) ; 2) вектор коллинеарен вектору ; 3) векторы и имеют одинаковое (противоположное) направление если λ > 0 (λ < 0).

Замечание: В случае, когда λ = 0 или произведение является нулевым вектором.

7.Определение линейной зависимости совокупности векторов , ,…, : привести два определения и показать их равносильность.

Пусть задана система векторов а1, а2, а3,…,аn (1) одной размерности.

Определение: система векторов (1) называется линейно-независимой, если равенство a1 а1+a2 а2+…+ an аn =0 (2) выполняется лишь в том случае, когда все числа a1, a2,…, an=0 и Î R

Определение: система векторов (1) называется линейно-зависимой, если равенство (2) выполнимо хотя бы при одном a i ¹ 0 (i=1,…,k)

Свойства

Если система векторов содержит нулевой вектор, то она линейно зависима

Если система векторов содержит линейно-зависимую подсистему векторов, то она будет линейно-зависимой.

Если система векторов линейно-независима, то и любая ее подсистема будет линейно независимой.

Если система векторов содержит хотя бы один вектор, являющийся линейной комбинацией других векторов, то эта система векторов будет линейно зависимой.




double arrow
Сейчас читают про: