Сбор и анализ исходных данных

Не всегда этот этап выделяется как самостоятельный, однако выполняемая на этом этапе работа исключительно важна, трудоемка. Если программирование и трассировку имитационной модели можно выполнять на гипотетических данных, то предстоящее экспериментальное исследование необходимо выполнять на реальном потоке данных. От этого зависит во многом точность получаемых результатов моделирования.

Здесь перед разработчиком имитационной модели встают два вопроса: где и каким образом получить, собрать исходную информацию; как обработать собранные данные о реальной системе.

Основные методы получения исходных данных:

из существующей документации на систему (это могут быть данные официальных и других отчетов, статистические сборники, например, для социально-экономических систем, финансовая и техническая документация -для производственных систем и физическое экспериментирование. Часто для задания исходной информации необходимо провести натурные эксперимент на моделируемой системе или ее прототипах (порой это бывают дорогостоящие эксперименты, -однако это плата за то, чтобы получить точную модель, на которой можно в дальнейшем проводить испытания). Такой подход применим для космических, военных исследований, в авиации. В более простых случаях можно проводить измерения, например хронометраж при выполнении производственных операций;

предварительный, априорный синтез данных. Иногда исходные данные могут не существовать, и сама природа моделируемой системы исключает возможность физического экспериментирования (например, проектируемые системы, прогнозирование в социальных и политических исследованиях). В этом случае предлагают различные приемы предварительного синтеза данных. Например, при моделировании информационных систем, продолжительность выполнения информационного требования оценивается на основании трудоемкости реализуемых на ЭВМ алгоритмов. К этим методам относят различные процедуры, основанные на общем анализе проблематики, анкетировании, интервьюировании, широком применении методов экспертного оценивания.

Второй вопрос связан с проблемой идентификации входных данных для стохастических систем. Мы уже говорили о том, что имитационное моделирование является эффективным аппаратом исследования стохастических систем, т.е. таких систем, динамика которых зависит от случайных факторов. Входные (и выходные) переменные стохастической модели, как правило, —случайные величины, векторы, функции, случайные процессы. Поэтому возникают дополнительные трудности, связанные с синтезом уравнений относительно неизвестных законов распределения и определением вероятностных характеристик (средних значений, дисперсий, корреляционных функций и т.п.) для анализируемых процессов и их параметров. Необходимость статистического анализа при сборе и анализе входных данных связана с задачами определения вида функциональных зависимостей, описывающих входные данные, оценкой конкретных значений параметров этих зависимостей, а также проверкой значимости параметров. Для подбора теоретических распределений случайных величин применяют известные методы математической статистики, основанные на определении параметров эмпирических распределений и проверке статистических гипотез, с использованием критериев согласия, о том, согласуются ли имеющиеся эмпирические данные с известными законами распределения (на статистически приемлемом доверительном уровне). Конечно, на вход модели можно подавать и сырые эмпирические данные, однако это неэффективно как с точки зрения программной реализации, так и с точки зрения моделирования, руководствуясь желанием получить более общие и полезные результаты на выходе имитационной модели.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: