Теория электролитической диссоциации. Активность и коэффициенты активности электролитов

Для объяснения особенностей водных растворов электролитов шведским ученым С.Аррениусом в 1887 г. была предложена теория электролитической диссоциации.В дальнейшем она была развита многими учеными на основе учения о строении атомов и химической связи.Современное содержание этой теории можно свести к следующим трем положениям:

1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы - положительные и отрицательные.

Ионы находятся в более устойчивых электронных состояниях, чем атомы. Они могут состоять из одного атома - это простые ионы (Na+, Mg2+, Аl3+ и т.д.) - или из нескольких атомов- это сложные ионы (NО3-, SO2-4, РОЗ-4и т.д.).

2. Под действием электрического тока ионы приобретают направленное_движение: положительно заряженные ионы движутся к катоду, отрицатель­но заряженные - к аноду.Поэтому первые называются катионами, вторые - анионами.

Направленное движение ионов происходит в результате притяжения их противоположно заряженными электродами.

3. Диссоциация - обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов (ассоциация).

Поэтому в уравнениях электролитической диссоциации вместо_знака равенства ставят знак обратимости. Например, уравнение диссоциации молекулы электролита КA на катион К+ и анион А- в общем виде записывается так:

КА K+ + A-

Теория электролитической диссоциации является одной из основных теорий в неорганической химии и полностью согласуется с атомно-молекулярным учением и теорией строения атома.

Переносчиками электрического тока в растворах электролитов являются ионы, образующиеся при диссоциации молекул электролитов. Поскольку при диссоциации число частиц в растворе возрастает, растворы электролитов обладают аномальными коллигативными свойствами.

Свойства реальных растворов описываются уравнениями, в которых вместо концентраций вводится активность. Активность иона ai выражается в виде произведения концентрации иона mi на его коэффициент активности i: ai = i mi.

Экспериментально определить активности катиона a+ и аниона a- невозможно, поэтому вводится понятие средней ионной активности a . Для электролита, образующего n + катионов и n - анионов,

, где n = n + + n -.

Аналогично определяют средний ионный коэффициент активности

и среднюю ионную моляльность ,

где - моляльность электролита.

Активность электролита определяется как

Согласно закону ионной силы, коэффициенты активности ионов не зависят от конкретного вида ионов, находящихся в растворе, а зависят от ионной силы I раствора: ,

где zi - заряд иона (в единицах заряда протона), mi - его моляльная концентрация.

Согласно первому приближению теории Дебая-Хюккеля, можно рассчитать как коэффициент активности i отдельного иона ,

так и средний ионный коэффициент активности ,

где z+ и z- заряды катиона и аниона, I - ионная сила раствора, A - константа, зависящая от диэлектрической проницаемости растворителя и температуры. Для водного раствора при 25o C A = 0.509.

Первый и второй законы термодинамики. Объединенное уравнение. Постулат Планка.

Первый закон термодинамики или закон сохранения энергии для тепловых процессов, связывает количество теплоты, переданное системе, изменение ее внутренней энергии и работу, совершенную системой над окружающими телами. Одна из возможных его формулировок звучит следующим образом:

Количество теплоты, сообщаемое термодинамической системе, равно сумме изменения ее внутренней энергии ΔU и работы A, совершаемой системой против внешних сил. Q = ΔU + A.

Если работа совершается внешними силами над термодинамической системой, то, обозначив ее A', первый закон термодинамики можно записать в виде уравнения Q + A' = ΔU.

Если термодинамическая система остается изолированной, то есть она не обменивается теплотой с окружающими телами, не совершает работу против внешних сил и внешние силы не совершают работу над системой, то ее внутренняя энергия остается величиной постоянной. Если A (A') и (или Q) не равны нулю, то следует говорить о сохранении не внутренней энергии термодинамической системы, а внутренней энергии и энергии всех тел, участвующих в термодинамическом процессе. Если при A = 0 (A' = 0), Q ≠ 0, то теплообмен системы с окружающими телами происходит без превращения внутренней энергии в другие виды. Если при Q = 0, A ≠ 0 (A' ≠ 0), то происходит превращение одного вида энергии в другой (механической во внутреннюю и внутренней в механическую). Первый закон термодинамики связывает три величины – ΔU, A (A'), Q.

2-ой Закон Термодинамики:

Второе начало термодинамики Второй закон связан с понятием энтропии, являющейся мерой хаоса (или мерой порядка). Второй закон термодинамики гласит, что для вселенной в целом энтропия возрастает.Существует два классических определения второго закона термодинамики:

Кельвина и Планка

Не существует циклического процесса, который извлекает количество теплоты из резервуара при определенной температуре и полностью превращает эту теплоту в работу. (Невозможно построить периодически действующую машину, которая не производит ничего другого, кроме поднятия груза и охлаждения резервуара теплоты)


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: