Буфер ассоциативной трансляции

В буфере TLB кэшируются дескрипторы страниц из таблицы страниц. Для хранения дескриптора в кэше отводится одна строка. Каждая строка дополнена тегом, в котором содержится номер соответствующей виртуальной страницы. Строки объединены по четыре в группы, называемые наборами. Таблица TLB, используемая для преобразования адресов инструкций, имеет 32 строки и соответственно 8 наборов. Номер набора называют индексом (index). Таким образом, путем кэширования может быть получен физический адрес для доступа к 32 страницам памяти, содержащим инструкции.

Рисунок 24. Буфер ассоциативной трансляции

После того как механизмом сегментации получен линейный адрес, он должен быть преобразован в физический адрес. Для этого прежде всего необходимо найти дескриптор страницы, к которой принадлежит данный адрес, и извлечь из него номер физической страницы. Обычная процедура предусматривает обращение к таблице разделов, а затем к таблице страниц. Однако физический адрес может быть получен гораздо быстрее благодаря тому, что в буфере TLB хранятся копии дескрипторов наиболее интенсивно используемых страниц. Поэтому перед тем, как начать сравнительно длительную процедуру преобразования адресов, делается попытка обнаружить нужный дескриптор страницы в быстрой ассоциативной памяти TLB. Затем на основании номера физической страницы, полученного из TLB, вычисляется физический адрес.

При поиске данных в TLB используется линейный виртуальный адрес. Разряды 12-14 используются как индекс набора. Далее проверяются биты действительности v всех строк выбранного набора. В начале работы кэш-памяти биты действительности всех строк сбрасываются в нуль. Бит действительности принимает значение 1, когда в соответствующей строке содержится достоверная информация и сбрасывается в нуль, когда строка объявляется свободной, в результате работы алгоритма замещения. Для всех действительных строк выполняется ассоциативная процедура сравнения тегов со старшими разрядами (15-31 разряд) линейного виртуального адреса. Если произошло кэш-попадание, то номер физической страницы быстро поступает в схему формирования физического адреса.

Если произошел промах и нужного дескриптора в TLB нет, то запускается многоэтапная процедура преобразования адреса, включающая обращения к таблицам разделов и страниц. Когда нужный дескриптор отыскивается в таблице страниц, он копируется в TLB. Номер набора, в который записывается кэшируемый дескриптор, определяется тремя младшими разрядами номера виртуальной страницы (разряды 12-14 линейного виртуального адреса).

Однако поскольку в наборе имеется четыре строки, необходимо определить, в какую именно надо поместить кэшируемые данные. Дескриптор записывается либо в первую попавшуюся свободную строку, либо, если все строки заняты, в строку, к которой дольше всего не обращались. Признаком занятости строки служит бит действительности v, имеющийся у каждой строки. Если v=0, значит, строка свободна для записи в нее нового содержимого. Для определения строки, которая не использовалась дольше всех других в данном наборе, применяется упрощенный вариант алгоритма PseudoLRU (Pseudo Least Recently Used). Этот алгоритм основан на анализе трех бит: b0,b1, bЗ, называемых битами обращения. Биты обращения приписываются набору и устанавливаются в соответствии с алгоритмом, приведенном на рис. 6.18. Здесь L0, LI, L2, L3 обозначают последовательные строки набора.

На замену выбирается одна из следующих строк:

· L0, если b0=0 и b1=0;

· L1, если b0=0 и b1=1;

· L2, если b0=1 и b2=0;

· L3, если b0=1 и b2=1.

Рисунок 25. Алгоритм установки битов обращения

Можно легко показать, что данная процедура не всегда приводит к выбору действительно дольше всех не вызывавшейся строки. Пусть, например, обращения к строкам выполнялись в следующей хронологической последовательности: L0, L2, L3, L1, то есть ближайшее по времени обращение было к строке L1, дольше же всего не было обращений к строке LO. Биты обращения в данном случае примут следующие значения. Поскольку последнее по времени обращение было к строке из пары (LO, L1), значит, Ь0=1. А в паре (L2, L3) последнее обращение было к L3, следовательно, Ь2=0. Отсюда, по правилу, приведенному выше, на замену выбирается строка L2, вместо строки L0, к которой на самом деле дольше всего не было обращений.

Однако в большинстве случаев этот алгоритм дает результат, совпадающий с оптимальным. Например, для последовательности L0, L3, LI, L2 биты обращения имеют значения b0=0, b1=0, отсюда точное решение — L0. Даже в случае ошибки (вероятность которой составляет 33 %) решения, найденные по алгоритму PseudoLRU, близки к оптимальным. Так, в первом примере вместо строки L0, являющейся правильным решением, алгоритм дал ближайшую к ней по времени обращения строку L2.

Несмотря на то что алгоритм PseudoLRU дает в общем случае приближенные решения, он широко применяется при кэшировании, так как является быстрым и экономичным, что чрезвычайно важно для кэш-памяти.

Таким образом, в буфере TLB процессора Pentium используется комбинированный способ отображения кэшируемых данных на кэш-память: прямое отображение дескрипторов на наборы и случайное отображение на строки в пределах набора.

Наличие TLB позволяет в подавляющем числе случаев заменить сравнительно долгую процедуру преобразования адресов, связанную с несколькими обращениями к оперативной памяти, быстрым поиском в ассоциативной памяти.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: