Цепи питания биполярных транзисторов

(схема с эмиттерной стабилизацией)

Известно немало схем цепей питания и стабилизации биполярных транзисторов. Одной из распространённых схем цепей питания является схема с эмиттерной стабилизацией ( рис.1.3 ). Эта схема относится к классу схем с автоматическим смещением. Они отличаются от схем с фиксированным смещением тем, что в них при изменении тока коллектора ток базы (или напряжение на базе) автоматически регулируется так, чтобы поддерживать заданный режим.

Вследствие внешнего сходства расположения резисторов с буквой H (аш), в зарубежной литературе эта структура известна, как схема с H-смещением.

Рис. 1.3 Схема цепи питания с эмиттерной стабилизацией

В исходном (статическом) режиме в схеме текут от плюса источника питания + ЕК к его минусу следующие постоянные токи:

ток покоя коллектора IОК – через резистор RК, через транзистор от коллектора к эмиттеру;

ток покоя базы IОБ – через резистор RБ1, переход база-эмиттер к эмиттеру.

Вытекая из эмиттера эти два тока, образуют эмиттерный ток IОЭ=IОК+IОБ. Кроме этих токов в схеме протекает постоянный ток через

последовательно соединённые резисторы RБ1 и RБ2. Этот ток принято называть током делителя IД. Так как питание транзистора осуществляется от одного источника питания ЕК, напряжение на базу транзистора подается с делителя напряжения на резисторах RБ1 и RБ2, а именно с резистора RБ2.

Ток эмиттера IОЭ, протекающий через резистор RЭ, создаёт на нём падение напряжения UЭ=IОЭ·RЭ.

Ток делителя создаёт на сопротивлении RБ2 падение напряжения URБ2=IД·RБ2. Это напряжение соответствует напряжению между базой и общим проводом UБ. В результате напряжение смещения база-эмиттер UОБ=UБ – UЭ=IД·RБ2–IОЭ·RЭ.

Необходимое напряжение смещения UОБ получают за счёт выбора соответствующих элементов делителя и сопротивления резистора RЭ. Обычно выбором RБ1 и RБ2 устанавливают ток делителя IД>>IОБ. Ток IД=(5…10)IОБ даёт право считать напряжение на базе транзистора фиксированным UБ=IД·RБ2=const.

Динамика процесса стабилизации в рассматриваемой схеме заключается в следующем.

Если под действием какого-либо дестабилизирующего фактора увеличивается ток коллектора IОК↑, то он вызывает рост эмиттерного тока IОЭ↑,

· · · это приводит к увеличению падения напряжения на резисторе RЭ.

UЭ↑=IОЭ↑·RЭ,

· · · увеличение напряжения на эмиттере UЭ↑ до U'Э =UЭ+∆UЭ при

неизменном напряжении UБ приводит к уменьшению смещения

между базой и эмиттером UОБ ↓ = UБ U'Э =UБ–UЭ↑.

· · · уменьшение смещения на базе UОБ↓ вызывает уменьшение

базового тока IОБ↓,

· · · уменьшение базового тока IОБ↓ приводит к уменьшению тока

коллектора IОК↓.

Краткая запись такого процесса: IОК↓→IОЭ↓→ UЭ↓→UБЭ↑→IОБ↑→IОК↑.

Здесь наблюдаются два воздействия на ток коллектора: прямое, от дестабилизирующих факторов, и обратное - по цепи ОС. Обратите внимание на направления стрелок при IОК. Происходит автоматическая стабилизация тока покоя коллектора IОК.

Высокая стабильность достигается при глубокой ОС. Для этого следует строить звено базового делителя с меньшим номинальным значением сопротивлений RБ1 и RБ2, а в эмиттерной цепи использовать сопротивления RЭ с большими номинальными значениями. К сожалению, сопротивления базового делителя нельзя задавать слишком маленькой величины, так как это приведёт к уменьшению коэффициента усиления, входного сопротивления, и увеличению потребляемой мощности, а RЭ нельзя выбирать слишком большой величины, так как на нём теряется часть напряжения источника питания. Известна рекомендация [4]

RБ=RЭ · h21/10, (1.1)

где RБ - параллельное соединение RБ1 и RБ2.

Для анализа стабилизирующих свойств схемы (рис.1.3) вспомним теорему об эквивалентном генераторе. Заменим принципиальную схему эквивалентной, показанной на рис.1.4. В соответствии с теоремой Тевенина [6]

ЕБ=ЕК·RБ2/(RБ1 + RБ2), (1.2)

RБ=RБ1·RБ2/ (RБ1 + RБ2).

Рис.1.4 Схема с эмиттерной стабилизацией, преобразованная по Тевенину.

Для схемы, приведённой на рис.1.4., можно написать равенство

ЕБ=IОБ·RБ + UБЭ + IОЭ·RЭ.

При нормальной температуре в известном соотношении ίК= ίБ · h21 + IКЭО [7] можно пренебречь обратным током эмиттера IКЭО. Тогда ток покоя коллектора IОК=h21·IОБ.

Выражая ток эмиттера через ток базы IОЭ= IОБ(1+h21), получаем

IОБ=(EБ – UБЭ)/[RБ+(1+h21)·RЭ], (1.3)

IОК=h21(EБ – UБЭ)/[RБ +(1+h21)RЭ]. (1.4)


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: