Електричні характеристики діелектриків

1. Загальні відомості.

2. Електропровідність діелектриків.

3. Методи визначення об'ємного і поверхневого опорів.

4. Діелектричні втрати.

5. Відносна діелектрична проникність.

1. Діелектриками називають речовини, основною електричною властивістю яких є здатність поляризуватися в електричному полі. В газоподібних, рідких і твердих діелектриках електричні заряди міцно пов'язані з атомами, молекулами або іонами і в електричному полі можуть лише змішатися. Відбувається розділення центрів позитивних і негативних зарядів, тобто поляризація. Діелектрики містять також і невелику кількість вільних зарядів і тому досить малий струм.

Діелектричними матеріалами називають клас електротехнічних матеріалів, призначених для використовування їх діелектричних властивостей (чинити великий опір проходженню електричного струму і здатність поляризуватися).

Електроізоляційними матеріалами називають діелектричні матеріали, призначені для створення електричної ізоляції струмопровідних частин в електротехнічних і радіоелектронних пристроях.

Діелектрики, що використовуються як електроізоляційні матеріали, називають пасивними. Активними називають діелектрики, параметри яких можна регулювати, змінюючи напруженість електричного поля, температуру, механічні напруги й інші параметри впливаючих на них факторів.

2. Наявність у технічних діелектриках невеликого числа вільних зарядів приводить до виникнення слабких за величиною крізних струмів або струмів витоку. Струм витикання складається з об'ємного струму витоку Iv, що протікає через об'єм, і поверхневого струму витоку Is, що протікає по поверхні ізоляції.

Iск = Iv + Is

Якщо до електродів, між якими знаходиться діелектрик, прикласти напругу U (В), то провідність G (См) такої ділянки ізоляції дорівнює

G = Iск / U

Величина зворотна G, називається опором ізоляції:

R = 1/G (Ом)

Для твердих діелектриків струм Iv визначає величину об'ємної провідності Gv, а струм Is - поверхневої провідності Gs ізоляції, а відповідно об'ємний Rv і поверхневий Rs опори.

Електропровідність діелектрика характеризують параметрами: питомою об'ємною sn і поверхневою ss провідністю або питомими об'ємним rn і поверхневим rs опором.

Для газоподібних і рідких діелектриків поверхневий опір і провідність не визначаються.

У системі СІ питомий об'ємний rn опір дорівнює опору куба з ребром в 1 м, у думках вирізаного з досліджуваного матеріалу, якщо струм проходить крізь куб від однієї його грані до протилежної. У разі плоского зразка матеріалу при однорідному полі питомий об'ємний опір розраховується за формулою:

rn = R S / h (Ом м)

де R - об'ємний опір зразка, Ом;

S - площа електрода, м;

h - товщина зразка, м.

Питомий поверхневий rs опір дорівнює опору квадрата (будь-яких розмірів), у думках виділеного на поверхні матеріалу, якщо струм проходить через квадрат від однієї його сторони до протилежної, і розраховується за формулою

rs = Rs d / L (Ом)

де Rs - поверхневий опір зразка матеріалу, Ом, між паралельно поставленими електродами шириною d, віддалених один від одного на відстані L.

Електропровідність ізоляційних матеріалів обумовлюється станом речовини: газоподібним, рідким або твердим, а також залежить від вологості і температури навколишнього середовища. Якийсь час на провідність діелектрика впливає так само напруженість поля зразка, при якій проводиться вимірювання.

3. Для визначення питомого об'ємного і поверхневого опору діелектриків використовують трьохелектродну схему їх включення у вимірювальну схему (рис. 5.1).

На зразку твердого діелектрика ОД виконуються електроди: високовольтний ВЕ з діаметром d4 і вимірювальний ІЕ з діаметром d1, мають вигляд диска, круга; охоронний ОЕ у вигляді кільця з внутрішнім d2 і зовнішнім d3 діаметрами. Зазор між вимірювальним і охоронним електродами повинен бути рівний (2 ± 0,2) мм.

При вимірюванні rn зразок вмикають за схемою, показаній на рисунку 5.1,а. Об'ємний струм Iv протікає через діелектрик від ВЕ до ІЕ по трубі з поперечним перетином (p d1/4) і довжиною h. Для вимірювання струму може бути використаний гальванометр Г, з шунтом Rш. Якщо на електрод ВЕ подана напруга U (В), а зміряний гальванометром струм дорівнює I (А), то опір зразка дорівнює Rv = U/I. Тоді rn розраховується за формулою

rn = Rv p d1/ (4h).

У ході вимірювань від ВЕ до ІЕ по поверхні зразка протікає поверхневий струм Is, який може бути рівний або навіть більше об'ємного струму витоку. Для того, щоб струм не вимірювався гальванометром, в схемі передбачений заземлений ОЕ (охоронне кільце). Поверхневий струм витоку через ОЕ відводиться на землю і тому не вимірюється гальванометром. Крім того, ОЕ вирівнює електричне поле у краю ВЕ, що забезпечує постійність перетину «трубки», по якій протікає об'ємний струм витоку.

d3

d2

 
 


d1

 
 


ОЕ

ІЕ

ВН Is

ОД Iv h Г

ВЕ Rш

d4

а


ВН


б

Рисунок 18.

Вимірювання rs проводиться за схемою, яка показана на рис. 5.1,б. Висока напруга подається на ОЕ. Поверхневий струм Is протікає від внутрішньої кромки ОЕ - кола з діаметром d2 - по поверхні зразка до кромки ІЕ - кола з діаметром d1. Можна прийняти, що довжина ділянки, по якій протікає поверхневий струм, дорівнює (d2 - d1)/2, а ширина визначається середнім діаметром dср = (d2 + d1)/2 і дорівнює p (d2 + d1)/2. Якщо зміряний поверхневий опір дорівнює Rs, то

rs = Rs p (d2 + d1)/(d2 -d1)

Об'ємний струм витоку Iv через заземлений ВЕ відводиться на землю і не потрапляє в гальванометр.

4. Діелектричними втратами називають енергію, що розсіюється в одиницю часу в діелектрику при дії на нього електричного поля і викликає нагрів діелектрика.

Втрати енергії в діелектриках спостерігаються як при змінній напрузі, так і при постійній, оскільки в матеріалі виявляється крізний струм.

Діелектричні втрати в електроізоляційних матеріалах можна характеризувати розсіюваною потужністю, віднесеною до одиниці об'єму або питомими втратами; частіше для характеристики здатності діелектрика розсіювати енергію в електричному полі користуються кутом діелектричних втрат, а також тангенсом цього кута.

Кутом діелектричних втрат називається кут, доповнюючий до 90° кут зсуву фаз j між струмом і напругою в колі ємності. У разі ідеального діелектрика вектор струму в такому колі дорівнює нулю. Чим більше розсіювана потужність, тим менше кут зсуву фаз j і тим більше кут діелектричних втрат і його функція tgd.

Неприпустимо великі діелектричні втрати в електроізоляційному матеріалі викликають сильне нагрівання виготовленого з нього виробу і можуть привести до його теплового руйнування.

На рис. 5.2 показана послідовна і паралельна схеми і відповідні їм діаграми струмів і напруг.

U/R

I

UwCр

Uу = I

d

d I/ wCs

j1 j 2

U U

Cs r

R

Рисунок 5.2

Обидві схеми еквівалентні на одній, якщо при рівності повних опорів Z1 = Z2 =Z рівні їх активні і реактивні складові. Ця умова буде виконана, коли кути зсуву струму щодо напруги j рівні і значення активної потужності однакові. Тоді для послідовної схеми tgd =w Cs r. Для паралельної схеми tgd = 1/w Cр R.

Діелектричні втрати набувають серйозне значення для матеріалів, що використовуються в установках високої напруги, у високочастотній апаратурі і особливо у високовольтних високочастотних пристроях, оскільки величина діелектричних втрат пропорційна квадрату прикладеної до діелектрика напруги і частоті поля. Матеріали, призначені для застосування у вказаних умовах, повинні відрізняться малими значеннями кута втрат і діелектричної проникності, оскільки в іншому випадку потужність, розсіювана в діелектрику, може стати неприпустимо великою.

Діелектричні втрати за їх особливостями і фізичною природою можна розділити на чотири основні види:

1) діелектричні втрати, обумовлені поляризацією, викликаються порушенням теплового руху частинок під впливом сил електричного поля, що приводить до розсіяння енергії і нагрівання діелектрика;

2) діелектричні втрати, обумовлені наскрізною електропровідністю, зростають з температурою за експоненціальним законом;

3) іонізаційні діелектричні втрати властиві діелектрикам у газоподібному стані, вони виявляються в неоднорідних електричних полях при напруженостях, перевищуючих значення, відповідне початку іонізації даного газу;

4) діелектричні втрати, обумовлені неоднорідністю структури, спостерігаються в діелектриках з насиченого паперу і тканини, в пластмасах з наповнювачем, у пористій кераміці і т.д.

5. Під впливом електричного поля зв'язані електричні заряди діелектрика зміщуються у напрямі діючих на них сил і тим більше, чим вище напруженість поля. При знятті електричного поля заряди повертаються в попередній стан.

Будь-який діелектрик з нанесеними на нього електродами, включеними в електричне коло, може розглядатися як конденсатор певної ємності (рис. 5.3).


- - - - -- - - - - - - U

+ + + + + + + + + E

- - - - - - - - - - - - Рисунок 5.3.

+ + + + + + + + +

Заряд всякого конденсатора дорівнює

Q =С U,

де С - ємність конденсатора;

U - прикладена до нього напруга.

Кількість електрики Q при заданому значенні прикладеної напруги складається з двох складових; Qо яка була б присутня на електродах, якби їх розділяв вакуум, і Qд, яка обумовлена поляризацією діелектрика, фактично розділяючого електроди

Q = Qo + Qд

Однією з найважливіших характеристик діелектрика, яка має особливе значення для техніки, є його відносна діелектрична проникність e. Ця величина є відношенням заряду Q, отриманого при деякій напрузі на конденсаторі, що містить даний діелектрик, до заряду Qо, який можна було б отримати в конденсаторі тих же розмірів і при тій же напрузі, якби між електродами знаходився вакуум

e = Q/Qo =(Qo + Qд)/Qo = 1 + Qд/Qo

З виразу виходить, що відносна діелектрична проникність будь-якої речовини більше одиниці і дорівнює одиниці тільки у разі вакууму, тоді

Q= e Qo =C U =Co Us

С - ємність, яку мав би даний конденсатор, якби його електроди розділяв вакуум.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: