Предмет, завдання і методологія біотехнології рослин

За останні 50 років площі земель, які використовуються у сільському господарстві залишились практично без змін, тоді як населення Землі зросло більше ніж у двічі. Забезпечення зрослої кількості населення продуктами харчування відбувалося у ці роки за рахунок поліпшення існуючих та створення нових високопродуктивних, стійких до біотичних і абіотичних факторів сортів рослин, порід тварин, корисних штамів мікроорганізмів. Важливу роль у вирішенні цих питань відіграє біотехнологія і особливо сучасна біотехнологія.

Біотехнологія – напрямок сучасної науки і техніки, основним завданням якого є використання живих організмів і біологічних процесів у виробництві. Термін “ біотехнологія ” походить від грецьких слів “bios” – життя, “techne” – майструвати, “logos” – вчення. Отже, це науковий напрямок, який поєднує можливості біології і техніки, коли біологія стає основою численних технологій.

Широкого поширення термін “ біотехнологія ” набув у середині 70х років ХХ ст., хоча такі галузі біотехнології як хлібопечення, виноробство, пивоваріння, сироваріння, які базуються на використанні мікроорганізмів, відомі з давніх часів.

Сьогодні до складу біотехнології входять промислова мікробіологія, технічна біохімія, генетична інженерія, клітинна інженерія. Сучасна біотехнологія характеризується використанням біологічних методів для боротьби з забрудненням довкілля, захисту рослин від шкідників та хвороб, виробництва цінних біологічно активних речовин (антибіотиків, ферментів, гормональних препаратів тощо).

Сфера використання біотехнологічних процесів постійно розширюється, особливо у сільському господарстві, в охороні здоров’я (сюди можна віднести медицину, фармакологію, охорону навколишнього середовища), харчовій промисловості (харчові та кормові добавки).

Одним із важливих завдань, які має вирішити біотехнологія є пошук природно відновлювальних джерел енергії за рахунок фотосинтезу.

Провідною ідеєю сільськогосподарської біотехнології є отримання повноцінних харчових продуктів безпосередньо із рослинної сировини, без участі тварин. Очікують вирощування повноцінних кормів (багатих на білок, лізин) безпосередньо у процесі фотосинтезу. Можливі шляхи вирішення цієї проблеми це:

1) створення нових азотфіксуючих систем на основі соматичних гібридів між найбільш перспективними сортами рослин і азотфіксуючими рослинами або азотфіксуючими бактеріями (це будуть не соматичні гібриди, а азотфіксуючі симбіотичні асоціації);

2) введення в рослини генів, які забезпечують фіксацію азоту;

3) зміна структурних генів запасних білків за допомогою мутагенезу, щоб включити нові кодони для дефіцитних амінокислот (додавши додаткові кодони або замінивши деякі існуючі на корисніші з точки зору поживності);

4) генетична трансформація.

Не менш важливим напрямком біотехнологічних досліджень є отримання препаратів, які використовуються в охороні здоров’я. За допомогою сучасних біотехнологічних методів отримано понад 70 білкових біологічно активних речовин, у тому числі гормонів, білків крові, імунорегуляторів та імуномедіаторів. Створені сучасні принципи одержання вакцин; розробляються принципово нові методи діагностики та лікування інфекційних, онкологічних та інших захворювань.

Тут слід звернути увагу на те, що добре відомо: дріжджі, „харчуючись” вуглеводнями нафти, синтезують кормовий білок, за участю мікроорганізмів отримують ферменти, фармацевтичні препарати, вітаміни тощо. А те що фізіологічно активні речовини, які містяться в женьшені, раувольфії, маці

снодійному та інших культурах, можна виділяти не лише із відповідних рослин, але й із їхніх клітин, які вирощують на штучних живильних середовищах в умовах in vitro, залишається поки що мало відомим фактом для широкого загалу.

Перспективним є вилучення хімічних елементів із руд та гірських порід під впливом мікроорганізмів або їхніх метаболітів. Целюлозна та паперова індустрія також потребують допомоги біотехнології: так встановлено, що біологічна обробка деревини покращує механічну якість паперу і зменшує витрати енергії на виробництво.

Продемонструвати значення біотехнології у сучасному житті можна на прикладі Японії. Виявилося, що із 113 опитаних компаній у 30 з них (26 %) уже ведуть дослідження з біотехнології, а 55 (49 %) - планують взяти в них участь у найближчий час. Досягнення біотехнології планується використовувати для виявлення або створення мікроорганізмів, які можуть бути використані для запобігання забрудненню навколишнього середовища і збагачення корисних копалин.

Біотехнологію прийнято поділяти на традиційну, або класичну і нетрадиційну, або сучасну.

Традиційні біотехнології, які існують тисячоліттями використовують для отримання необхідних людині продуктів мікроорганізми, організми тварин та рослин.

Об’єктами дослідження нетрадиційної біотехнології, розвиток якої розпочався наприкінці ХІХ століття, стали тканини і клітини вищих багатоклітинних організмів, а також мікроорганізми, створені методами генної інженерії. Вищим досягненням сучасної біотехнології є генетична трансформація – перенесення чужорідних генів та інших носіїв спадковості у клітини рослин, тварин і мікроорганізмів, отримання трансгенних організмів з новими або покращеними властивостями і ознаками. Саме цей напрямок біотехнології дозволить вирішити докорінні завдання селекції біологічних об’єктів на стійкість, високу продуктивність і якість продукції. Уже сьогодні у багатьох лабораторіях світу, у тому числі і в Україні, за допомогою методів генетичної трансформації створені принципово нові трансгенні рослини, тварини і мікроорганізми, які отримали комерційне визнання.

Лауреат Нобелівської премії Норман Борлауг вважає, що лише нові біотехнології можуть врятувати світ від голоду та екологічних катастроф. І суттєва роль у цьому належить біотехнології рослин.

Біотехнологія рослин – це сукупність технічних прийомів для модифікації, покращення, створення та розмноження рослинних організмів, одержання з них корисних речовин.

Вирощування і маніпуляції з клітинами, тканинами і органами рослин поза організмом на штучних живильних середовищах у строго контрольованих умовах дозволяє:

- отримувати результати незалежно від клімату, сезону, ґрунтових умов;

- вивчати такі складні процеси як ріст, клітинна диференціація і розвиток рослинного організму, метаболізм і його регуляція у клітинах і тканинах цілої рослини;

- проводити швидке розмноження у дуже великих кількостях;

- отримувати безвірусний рослинний матеріал;

- створювати принципово нові технології для промисловості і сільського господарства;

- скоротити селекційний процес у 2, а той і 3 рази.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: