Закон кулона

теорема гаусса

В науке часто бывает, что один и тот же закон можно сформулировать по-разному. По большому счету, от формулировки закона ничего не меняется с точки зрения его действия, однако новая формулировка помогает теоретикам несколько иначе интерпретировать закон и испытать его применительно к новым природным явлениям. Именно такой случай мы и наблюдаем с теоремой Гаусса, которая по существу является обобщением закона кулона, который, в свою очередь, явился обобщением всего, что ученые знали об электростатических зарядах на момент, когда он был сформулирован.

Вообще говоря, в математике, физике и астрономии найдется немного областей, развитию которых не посодействовал замечательный гений Карла Фридриха Гаусса. В 1831 году он вместе со своим молодым коллегой Вильгельмом Вебером (Wilhelm Weber, 1804-1891) занялся изучением электричества и магнетизма и вскоре сформулировал и доказал теорему, названную его именем. Чтобы понять, в чем заключается ее смысл, представьте себе изолированный точечный электрический заряд q. А теперь представьте, что он окружен замкнутой поверхностью. Форма поверхности в теореме не важна — это может быть пусть даже сдутый воздушный шарик. В каждой точке окружающей заряд поверхности, однако, наблюдается электрическое поле, образованное зарядом, а произведение напряженности этого электрического поля на сколь угодно малую единицу площади окружающей заряд поверхности, через которую проходят силовые линии поля, называется потоком напряженности электрического поля, и можно рассчитать поток напряженности, приходящийся на каждый элемент поверхности. Теорема Гаусса как раз и гласит, что суммарный поток напряженности электрического поля, проходящий через окружающую заряд поверхность, пропорционален величине заряда.

Связь между законом Кулона и теоремой Гаусса станет очевидной на простом примере. Предположим, что заряд q окружен сферой радиуса r. На удалении r от заряда напряженность электрического поля, которая определяется силой притяжения или отталкивания единичного заряда, помещенного в соответствующую точку, составит, согласно закону Кулона:

E = kq/r2

И то же самое значение мы получим для любой точки сферы заданного радиуса. Следовательно, суммарный поток напряженности электрического поля будет равен значению напряженности поля на удалении r от заряда, помноженному на площадь сферы (которая, как известно, равняется 4nr2). Иными словами, суммарный поток будет равен:

4nr2 х kq/r2 = 4nkq

Это и есть теорема Гаусса.

Интересное следствие из нее получается, если применить эту теорему к сплошному металлу. Представьте себе цельнометаллический предмет и воображаемую замкнутую поверхность внутри него. Полный электрический заряд внутри такой поверхности будет нулевым, поскольку внутри окажется равное число положительных

и отрицательньгх зарядов — протонов атомных ядер и электронов соответственно. Следовательно, поток напряженности электрического поля, проходящий через такую замкнутую поверхность, также будет равен нулю. Поскольку это верно для любой замкнутой поверхности внутри металла, это означает, что внутри металла не существует и не может существовать электрического поля.

Это свойство металлов часто используется экспериментаторами и инженерами-связистами для защиты высокочувствительных приборов от наведенных извне электрических помех. Обычно прибор просто окружается защитным медным экраном. Согласно теореме Гаусса, внешние электрические поля просто не в состоянии проникнуть внутрь такой оболочки и создать помехи работе прибора.

Другое интересное следствие теоремы Гаусса заключается в том, что если в дороге вас застала гроза, самое безопасное для вас — не выходить из машины, поскольку там вы окружены цельнометаллическим экраном. Даже если в ваш автомобиль ударит молния, внутри вам ничего не будет угрожать, поскольку весь разряд пройдет по корпусу и уйдет в землю. Резина, скорее всего, сгорит, зато сами вы останетесь в целости и сохранности.

КАРЛ ФРИДРИХ ГАУСС (Karl Friedrich Gauss, 1777-1855) — немецкий математик из числа великих, не уступающий по рангу Ньютону или Архимеду. Родился в Брауншвейге (Braunschweig), в семье крестьян. Гениальные способности в математике проявил уже в раннем детстве, и пораженный его удивительным талантом учитель начальной школы убедил родителей Карла не определять мальчика в ремесленное училище, а дать ему возможность продолжить образование. В возрасте четырнадцати лет Гаусс буквально потряс своими обширными познаниями графа Брауншвейгского, и тот выделил юноше именную стипендию. Большинство своих важнейших математических открытий Гаусс сделал еще до присвоения ему ученой степени доктора наук Гёттингенским университетом в 1799 году, а спустя два года он опубликовал свой самый фундаментальный труд «Трактат о математике» (Disquisi-tiones Mathematicae), который посвятил своему влиятельному покровителю.

Речь в трактате шла о теории чисел — разделе математики, занимающемся, в частности, натуральными числами и соотношениями между ними, такими как великая теорема ферма. Занятий математикой Гаусс не оставлял и впоследствии, сформулировав ряд принципов теории вероятностей и математической статистики, включая распределение случайных величин вокруг среднего значения, получившее название распределения Гаусса.

В 1801 году, после открытия первого астероида Цереры, Гаусс обратился к астрономии. Для расчета параметров его орбиты он разработал метод наименьших квадратов, позволяющий полностью рассчитать орбиту астероида по результатам всего трех измерений его положения на околосолнечной орбите. Пять лет спустя ученый был назначен директором Гёт-тингенской обсерватории и оставался на этом посту до конца жизни. Кроме того, Гаусс первым всерьез занялся изучением земного магнетизма, и не случайно единица напряженности магнитного поля названа гауссом в его честь.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow